BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18600665)

  • 1. The production of the enzyme dextransucrase using nonaerated fermentation techniques.
    Barker PE; Ajongwen NJ
    Biotechnol Bioeng; 1991 Apr; 37(8):703-7. PubMed ID: 18600665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of dextransucrase by Leuconostoc mesenteroides immobilized in calcium-alginate beads: I. Batch and fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):338-45. PubMed ID: 18595087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of dextransucrase and dextran by Leuconostoc mesenteroides immobilized in calcium-alginate beads: II. Semicontinuous fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):346-53. PubMed ID: 18595088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of response surface methodology for maximizing dextransucrase production from Leuconostoc mesenteroides NRRL B-640 in a bioreactor.
    Purama RK; Goyal A
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):182-92. PubMed ID: 18975146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.
    Chagas CM; Honorato TL; Pinto GA; Maia GA; Rodrigues S
    Bioprocess Biosyst Eng; 2007 May; 30(3):207-15. PubMed ID: 17323142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F.
    Rodrigues S; Lona LM; Franco TT
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):57-62. PubMed ID: 14505164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of production of dextransucrase and dextran by cells of Leuconostoc mesenteroides immobilized on Celite and in calcium alginate beads.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Jun; 36(1):83-91. PubMed ID: 18592612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of feed zone in fed-batch fermentations of Saccharomyces cerevisiae.
    Namdev PK; Thompson BG; Gray MR
    Biotechnol Bioeng; 1992 Jun; 40(2):235-46. PubMed ID: 18601109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast.
    Li F; Zhao XQ; Ge XM; Bai FW
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1079-86. PubMed ID: 19475405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of production of dextran and dextransucrase by Leuconostoc mesenteroides immobilized within porous stainless steel.
    El-Sayed AH; Abdul-Wahid K; Coughlin RW
    Biotechnol Bioeng; 1992 Aug; 40(5):617-24. PubMed ID: 18601158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostocmesenteroides NRRL B-640 using statistical approach.
    Purama RK; Goyal A
    Bioresour Technol; 2008 Oct; 99(15):7108-14. PubMed ID: 18313291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and regulation of sucrose phosphorylase formation in Leuconostoc mesenteroides fermentations.
    Vandamme EJ; Van Loo J; De Laporte A
    Biotechnol Bioeng; 1987 Jan; 29(1):8-15. PubMed ID: 18561123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F.
    Lee MS; Cho SK; Eom HJ; Kim SY; Kim TJ; Han NS
    J Microbiol Biotechnol; 2008 Jun; 18(6):1141-5. PubMed ID: 18600060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability Study of Crude Dextransucrase from Leuconostoc citreum NRRL B-742.
    Rabelo MC; Fontes CM; Rodrigues S
    Indian J Microbiol; 2011 Jun; 51(2):164-70. PubMed ID: 22654159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of oligosaccharide synthesis from cellobiose by dextransucrase.
    Kim M; Day DF
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):189-98. PubMed ID: 18418751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel family of glucosyl 1,5-anhydro-d-fructose derivatives synthesised by transglucosylation with dextransucrase from Leuconostoc mesenteroides NRRL B-512F.
    Richard G; Yu S; Monsan P; Remaud-Simeon M; Morel S
    Carbohydr Res; 2005 Feb; 340(3):395-401. PubMed ID: 15680594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation.
    Ryu HW; Hahn SK; Chang YK; Chang HN
    Biotechnol Bioeng; 1997 Jul; 55(1):28-32. PubMed ID: 18636441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose.
    Yang ST; Huang Y; Hong G
    Biotechnol Bioeng; 1995 Mar; 45(5):379-86. PubMed ID: 18623230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations.
    Goel G; Makkar HP; Becker K
    Br J Nutr; 2009 May; 101(10):1484-92. PubMed ID: 19243639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient production of single-chain Fv antibody possessing rare codon linkers in fed-batch fermentation.
    Kumada Y; Sakan Y; Kajihara H; Kihara M; Kikuchi Y; Yamaji H; Seong GH; Katoh S
    J Biosci Bioeng; 2009 Jan; 107(1):73-7. PubMed ID: 19147114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.