These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 18600704)

  • 1. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.
    Schellenberger V; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jun; 38(1):104-8. PubMed ID: 18600704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.
    Schellenberger V; Schellenberger U; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jul; 38(3):319-21. PubMed ID: 18600766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism.
    Thormann M; Thust S; Hofmann HJ; Bordusa F
    Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protease-catalyzed peptide synthesis: prevention of side reactions in kinetically controlled reactions.
    Schellenberger V; Görner A; Könnecke A; Jakubke HD
    Pept Res; 1991; 4(5):265-9. PubMed ID: 1802237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Peptide synthesis catalyzed by proteases. Elevated nucleophilic activity of naphthylamides of amino acids in acyl transfer reactions catalyzed by alpha-chymotrypsin].
    Gololobov MIu; Shviadas VK
    Biokhimiia; 1988 Jul; 53(7):1174-80. PubMed ID: 3179365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide synthesis with a proteinase from the extremely thermophilic organism Thermus Rt41A.
    Wilson SA; Daniel RM; Peek K
    Biotechnol Bioeng; 1994 Jul; 44(3):337-46. PubMed ID: 18618750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of tissue plasminogen activator specificity using peptidyl fluorogenic substrates.
    Butenas S; Kalafatis M; Mann KG
    Biochemistry; 1997 Feb; 36(8):2123-31. PubMed ID: 9047311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable acyl-derivatives of trypsin-like enzymes. Preparation, kinetics, application.
    Stürzebecher J
    Biomed Biochim Acta; 1986; 45(11-12):1405-10. PubMed ID: 3579870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide synthesis catalyzed by the Glu/Asp-specific endopeptidase. Influence of the ester leaving group of the acyl donor on yield and catalytic efficiency.
    Bongers J; Liu W; Lambros T; Breddam K; Campbell RM; Felix AM; Heimer EP
    Int J Pept Protein Res; 1994 Aug; 44(2):123-9. PubMed ID: 7982755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of several types of substrates to ficin-catalyzed peptide synthesis.
    Sekizaki H; Toyota E; Fuchise T; Zhou S; Noguchi Y; Horita K
    Amino Acids; 2008 Jan; 34(1):149-53. PubMed ID: 17619121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structure of the active center of subtilisin 72].
    Kazanskaia NF; Kost OA
    Biokhimiia; 1982 May; 47(5):834-41. PubMed ID: 7046815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From good substrates to good inhibitors: design of inhibitors for serine and thiol proteases.
    Baggio R; Shi YQ; Wu YQ; Abeles
    Biochemistry; 1996 Mar; 35(11):3351-3. PubMed ID: 8639483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease-catalyzed peptide synthesis for the site-specific incorporation of alpha-fluoroalkyl amino acids into peptides.
    Thust S; Koksch B
    J Org Chem; 2003 Mar; 68(6):2290-6. PubMed ID: 12636393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atlantic cod trypsin-catalyzed peptide synthesis with inverse substrates as acyl donor components.
    Fuchise T; Kishimura H; Yang ZH; Kojoma M; Toyota E; Sekizaki H
    Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):484-7. PubMed ID: 20410629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.