These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18600746)

  • 1. Influence of the screen material on the fouling of spin filters.
    Esclade LR; Carrel S; Péringer P
    Biotechnol Bioeng; 1991 Jun; 38(2):159-68. PubMed ID: 18600746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production.
    Deo YM; Mahadevan MD; Fuchs R
    Biotechnol Prog; 1996; 12(1):57-64. PubMed ID: 8845109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures.
    Vallez-Chetreanu F; Fraisse Ferreira LG; Rabe R; von Stockar U; Marison IW
    J Biotechnol; 2007 Jun; 130(3):265-73. PubMed ID: 17543407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of sampling and analysis of asbestos fibers on filter media: implications for exposure assessment.
    Vallero DA; Kominsky JR; Beard ME; Crankshaw OS
    J Occup Environ Hyg; 2009 Jan; 6(1):62-72. PubMed ID: 19037817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian cell retention in a spinfilter perfusion bioreactor.
    Yabannavar VM; Singh V; Connelly NV
    Biotechnol Bioeng; 1992 Oct; 40(8):925-33. PubMed ID: 18601200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaleup of spinfilter perfusion bioreactor for mammalian cell retention.
    Yabannavar VM; Singh V; Connelly NV
    Biotechnol Bioeng; 1994 Jan; 43(2):159-64. PubMed ID: 18615610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fouling in sterile filtration of recombinant human growth hormone.
    Maa YF; Hsu CC
    Biotechnol Bioeng; 1996 May; 50(3):319-28. PubMed ID: 18626959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes.
    Nghiem LD; Espendiller C; Braun G
    Water Sci Technol; 2008; 58(1):163-9. PubMed ID: 18653950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator.
    Nghiem LD; Vogel D; Khan S
    Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of interactions between NOM and particles on UF fouling mechanisms.
    Jermann D; Pronk W; Kägi R; Halbeisen M; Boller M
    Water Res; 2008 Aug; 42(14):3870-8. PubMed ID: 18715606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of electrospun fibre diameter and corresponding specific surface area (SSA) on cell attachment.
    Chen M; Patra PK; Lovett ML; Kaplan DL; Bhowmick S
    J Tissue Eng Regen Med; 2009 Jun; 3(4):269-79. PubMed ID: 19347841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attachment point theory revisited: the fouling response to a microtextured matrix.
    Scardino AJ; Guenther J; de Nys R
    Biofouling; 2008; 24(1):45-53. PubMed ID: 18066730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore blocking mechanisms during early stages of membrane fouling by colloids.
    Wang F; Tarabara VV
    J Colloid Interface Sci; 2008 Dec; 328(2):464-9. PubMed ID: 18848335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth inhibition and differentiation of cultured smooth muscle cells depend on cellular crossbridges across the tubular lumen of type I collagen matrix honeycombs.
    Suzuki T; Ishii I; Kotani A; Masuda M; Hirata K; Ueda M; Ogata T; Sakai T; Ariyoshi N; Kitada M
    Microvasc Res; 2009 Mar; 77(2):143-9. PubMed ID: 18848952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and composition of extracellular lipids and polysaccharides in a full-scale membrane bioreactor.
    Al-Halbouni D; Dott W; Hollender J
    Water Res; 2009 Jan; 43(1):97-106. PubMed ID: 18996555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fouling control of a membrane coupled photocatalytic process treating greywater.
    Pidou M; Parsons SA; Raymond G; Jeffrey P; Stephenson T; Jefferson B
    Water Res; 2009 Sep; 43(16):3932-9. PubMed ID: 19539972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds.
    Karau A; Benken C; Thömmes J; Kula MR
    Biotechnol Bioeng; 1997 Jul; 55(1):54-64. PubMed ID: 18636444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybridized photocatalysis-microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids.
    Yao P; Choo KH; Kim MH
    Water Res; 2009 Sep; 43(17):4238-48. PubMed ID: 19576613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.