These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 18600763)
1. Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli. Beall DS; Ohta K; Ingram LO Biotechnol Bioeng; 1991 Jul; 38(3):296-303. PubMed ID: 18600763 [TBL] [Abstract][Full Text] [Related]
2. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
3. Ethanol production from corn cob hydrolysates by Escherichia coli KO11. de Carvalho Lima KG; Takahashi CM; Alterthum F J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633 [TBL] [Abstract][Full Text] [Related]
4. Novel two-stage fermentation process for bioethanol production using Saccharomyces pastorianus. Gowtham YK; Miller KP; Hodge DB; Henson JM; Harcum SW Biotechnol Prog; 2014; 30(2):300-10. PubMed ID: 24376155 [TBL] [Abstract][Full Text] [Related]
5. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Dien BS; Nichols NN; O'Bryan PJ; Bothast RJ Appl Biochem Biotechnol; 2000; 84-86():181-96. PubMed ID: 10849788 [TBL] [Abstract][Full Text] [Related]
6. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas. Lawford HG; Rousseau JD; McMillan JD Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087 [TBL] [Abstract][Full Text] [Related]
7. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Saha BC; Iten LB; Cotta MA; Wu YV Biotechnol Prog; 2005; 21(3):816-22. PubMed ID: 15932261 [TBL] [Abstract][Full Text] [Related]
8. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Andersson C; Hodge D; Berglund KA; Rova U Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726 [TBL] [Abstract][Full Text] [Related]
9. Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures. Saez-Miranda JC; Saliceti-Piazza L; McMillan JD Biotechnol Prog; 2006; 22(2):359-68. PubMed ID: 16599547 [TBL] [Abstract][Full Text] [Related]
10. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766 [TBL] [Abstract][Full Text] [Related]
11. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Chen K; Iverson AG; Garza EA; Grayburn WS; Zhou S Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107 [TBL] [Abstract][Full Text] [Related]
12. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Alterthum F; Ingram LO Appl Environ Microbiol; 1989 Aug; 55(8):1943-8. PubMed ID: 2675762 [TBL] [Abstract][Full Text] [Related]
13. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
14. Bioconversion of brewer's spent grains to bioethanol. White JS; Yohannan BK; Walker GM FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331 [TBL] [Abstract][Full Text] [Related]
15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
17. Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Ferrari MD; Neirotti E; Albornoz C; Saucedo E Biotechnol Bioeng; 1992 Oct; 40(7):753-9. PubMed ID: 18601178 [TBL] [Abstract][Full Text] [Related]
18. Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: Impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Jin P; Li S; Lu SG; Zhu JG; Huang H Bioresour Technol; 2011 Jan; 102(2):1815-21. PubMed ID: 21036601 [TBL] [Abstract][Full Text] [Related]
19. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
20. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Aristidou AA; San KY; Bennett GN Biotechnol Prog; 1999; 15(1):140-5. PubMed ID: 9933525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]