BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 18600766)

  • 1. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.
    Schellenberger V; Schellenberger U; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jul; 38(3):319-21. PubMed ID: 18600766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.
    Schellenberger V; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jun; 38(1):104-8. PubMed ID: 18600704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleophile specificity of subtilisin in an organic solvent with low water content: investigation via acyl transfer reactions.
    Cerovský V; Jakubke HD
    Biotechnol Bioeng; 1996 Mar; 49(5):553-8. PubMed ID: 18623617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism.
    Thormann M; Thust S; Hofmann HJ; Bordusa F
    Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of tissue plasminogen activator specificity using peptidyl fluorogenic substrates.
    Butenas S; Kalafatis M; Mann KG
    Biochemistry; 1997 Feb; 36(8):2123-31. PubMed ID: 9047311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease-catalyzed peptide synthesis: prevention of side reactions in kinetically controlled reactions.
    Schellenberger V; Görner A; Könnecke A; Jakubke HD
    Pept Res; 1991; 4(5):265-9. PubMed ID: 1802237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors can activate proteases to catalyze the synthesis and hydrolysis of peptides.
    Schechter I; Ziv E
    Biochemistry; 2006 Dec; 45(49):14567-72. PubMed ID: 17144650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Peptide synthesis catalyzed by proteases. Analysis of a kinetic model for enzymes with acyl-enzyme mechanism of action].
    Gololobov MIu; Borisov IL; Shviadas VK
    Biokhimiia; 1987 Apr; 52(4):584-91. PubMed ID: 3297174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide synthesis catalyzed by the serine proteinases chymotrypsin and trypsin.
    Riechmann L; Kasche V
    Biochim Biophys Acta; 1985 Aug; 830(2):164-72. PubMed ID: 4016137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of the X-Pro peptide bond by pepsin is specific for the trans isomer.
    Vance JE; LeBlanc DA; London RE
    Biochemistry; 1997 Oct; 36(43):13232-40. PubMed ID: 9341212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sterospecific selection of nucleophilic compounds in the chymotrypsin-catalyzed formation of the peptide bonds].
    Ivanov LL; Botvinik MM
    Biokhimiia; 1976 Apr; 41(4):619-29. PubMed ID: 1022288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity and reversibility of the transpeptidation reaction catalyzed by the Streptomyces R61 D-Ala-D-Ala peptidase.
    Rhazi N; Delmarcelle M; Sauvage E; Jacquemotte F; Devriendt K; Tallon V; Ghosez L; Frère JM
    Protein Sci; 2005 Nov; 14(11):2922-8. PubMed ID: 16199665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, chemical synthesis and kinetic studies of trypsin chromogenic substrates based on the proteinase binding loop of Cucurbita maxima trypsin inhibitor (CMTI-III).
    Lesner A; Brzozowski K; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2000 Mar; 269(1):81-4. PubMed ID: 10694481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetically controlled synthesis of dipeptides using ficin as biocatalyst.
    Monter B; Herzog B; Stehle P; Fürst P
    Biotechnol Appl Biochem; 1991 Oct; 14(2):183-91. PubMed ID: 1760130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleophile specificity in papain-catalyzed acyl transfer reactions.
    Schuster M; Jakubke HD; Kasche V
    Biomed Biochim Acta; 1991; 50(10-11):S122-6. PubMed ID: 1820032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xaa-Pro-dipeptidyl-aminopeptidase from Lactococcus lactis catalyses kinetically controlled synthesis of peptide bonds involving proline.
    Yoshpe-Besançon I; Gripon JC; Ribadeau-Dumas B
    Biotechnol Appl Biochem; 1994 Aug; 20(1):131-40. PubMed ID: 7917062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acyl group transfer by proteases forming acyl-enzyme intermediate: kinetic model analysis.
    Gololobov MY; Borisov IL; Belikov VM; Svedas VK
    Biotechnol Bioeng; 1988 Sep; 32(7):866-72. PubMed ID: 18587797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.