These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18600795)

  • 1. Properties of microfiltration membranes: flux loss during constant pressure permeation of bovine serum albumin.
    Bowen WR; Gan Q
    Biotechnol Bioeng; 1991 Oct; 38(7):688-96. PubMed ID: 18600795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of microfiltration membranes: the effects of adsorption and shear on the recovery of an enzyme.
    Bowen WR; Gan Q
    Biotechnol Bioeng; 1992 Aug; 40(4):491-7. PubMed ID: 18601143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of microfiltration membranes: Mechanisms of flux loss in the recovery of an enzyme.
    Bowen WR; Hall NJ
    Biotechnol Bioeng; 1995 Apr; 46(1):28-35. PubMed ID: 18623259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of pressure-driven fluid flow in nanoporous membranes.
    Takaba H; Onumata Y; Nakao S
    J Chem Phys; 2007 Aug; 127(5):054703. PubMed ID: 17688353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fouling and protein adsorption. Effect of low-temperature plasma treatment of membrane surfaces.
    Johansson J; Yasuda HK; Bajpai RK
    Appl Biochem Biotechnol; 1998; 70-72():747-63. PubMed ID: 18576039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of the Permeate Flux during Microfiltration of BSA-Adsorbed Microspheres in a Stirred Cell.
    Choi SW; Yoon JY; Haam S; Jung JK; Kim JH; Kim WS
    J Colloid Interface Sci; 2000 Aug; 228(2):270-278. PubMed ID: 10926466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous aluminum oxide membranes for filtration and biofunctionalization.
    Thormann A; Teuscher N; Pfannmöller M; Rothe U; Heilmann A
    Small; 2007 Jun; 3(6):1032-40. PubMed ID: 17492744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of protein fouling during ultrafiltration using a two-layer membrane model.
    Boyd RF; Zydney AL
    Biotechnol Bioeng; 1998 Aug; 59(4):451-60. PubMed ID: 10099359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces.
    Jeyachandran YL; Mielczarski JA; Mielczarski E; Rai B
    J Colloid Interface Sci; 2010 Jan; 341(1):136-42. PubMed ID: 19818963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of membrane fouling by protein mixtures using MALDI-MS.
    Chan R; Chen V; Bucknall MP
    Biotechnol Bioeng; 2004 Jan; 85(2):190-201. PubMed ID: 14705002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes.
    Mochizuki S; Zydney AL
    Biotechnol Prog; 1992; 8(6):553-61. PubMed ID: 1369038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.
    Martínez F; Martín A; Prádanos P; Calvo JI; Palacio L; Hernández A
    J Colloid Interface Sci; 2000 Jan; 221(2):254-261. PubMed ID: 10631028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation albumin-PEG: transmission of PEG through ultrafiltration membranes.
    Lentsch S; Aimar P; Orozco JL
    Biotechnol Bioeng; 1993 May; 41(11):1039-47. PubMed ID: 18601289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.