These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18600869)

  • 1. Diffusion of lactose in kappa-carrageenan/locust bean gum gel beads with or without entrapped growing lactic acid bacteria.
    Arnaud JP; Lacroix C
    Biotechnol Bioeng; 1991 Nov; 38(9):1041-9. PubMed ID: 18600869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counter-diffusion of lactose and lactic acid in kappa-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria.
    Arnaud JP; Lacroix C; Castaigne F
    Enzyme Microb Technol; 1992 Sep; 14(9):715-24. PubMed ID: 1368894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effective diffusion coefficient and the distribution constant for small molecules in calcium-alginate gel beads.
    Oyaas J; Storrø I; Svendsen H; Levine DW
    Biotechnol Bioeng; 1995 Aug; 47(4):492-500. PubMed ID: 18623426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar Utilization and Acid Production by Free and Entrapped Cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a Whey Permeate Medium.
    Audet P; Paquin C; Lacroix C
    Appl Environ Microbiol; 1989 Jan; 55(1):185-9. PubMed ID: 16347822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion in kappa-carrageenan gel beads.
    Nguyen AL; Luong JH
    Biotechnol Bioeng; 1986 Aug; 28(8):1261-7. PubMed ID: 18555455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of sucrose and yohimbine in calcium alginate gel beads with or without entrapped plant cells.
    Pu HT; Yang RY
    Biotechnol Bioeng; 1988 Sep; 32(7):891-6. PubMed ID: 18587800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of (de)acylated antibiotic A40926 in alginate and carrageenan beads with or without cells and/or soybean meal.
    Jovetica S; Beeftink HH; Tramper J; Marinelli F
    Enzyme Microb Technol; 2001 Apr; 28(6):510-514. PubMed ID: 11267645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads.
    Xu X; Stewart PS; Chen X
    Biotechnol Bioeng; 1996 Jan; 49(1):93-100. PubMed ID: 18623558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous production of mixed lactic starters containing probiotics using immobilized cell technology.
    Doleyres Y; Fliss I; Lacroix C
    Biotechnol Prog; 2004; 20(1):145-50. PubMed ID: 14763837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase.
    de Alteriis E; Silvestro G; Poletto M; Romano V; Capitanio D; Compagno C; Parascandola P
    J Biotechnol; 2004 Apr; 109(1-2):83-92. PubMed ID: 15063616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel technique for measuring solute diffusivities in entrapment matrices used in immobilization.
    Merchant FJ; Margaritis A; Wallace JB; Vardanis A
    Biotechnol Bioeng; 1987 Dec; 30(8):936-45. PubMed ID: 18581532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation.
    Wang H; Seki M; Furusaki S
    Biotechnol Prog; 1995; 11(5):558-64. PubMed ID: 8546838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term mechanical and biological stability of an immobilized cell reactor for continuous mixed-strain mesophilic lactic starter production in whey permeate.
    Lamboley L; Lacroix C; Artignan JM; Champagne CP; Vuillemard JC
    Biotechnol Prog; 1999 Jul; 15(4):646-54. PubMed ID: 10441356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of various encapsulating materials on the stability of probiotic bacteria.
    Ding WK; Shah NP
    J Food Sci; 2009 Mar; 74(2):M100-7. PubMed ID: 19323757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen diffusivity in gel beads containing viable cells.
    Kurosawa H; Matsumura M; Tanaka H
    Biotechnol Bioeng; 1989 Oct; 34(7):926-32. PubMed ID: 18588184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial dynamics of co- and separately entrapped mixed cultures of mesophilic lactic acid bacteria during the continuous prefermentation of milk.
    Sodini I; Boquien CY; Corrieu G; Lacroix C
    Enzyme Microb Technol; 1997 Apr; 20(5):381-8. PubMed ID: 9084207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of acetophenone and phenethyl alcohol in the calcium-alginate-bakers' yeast-hexane system.
    Wu W; Sidhoum M; Delancey GB
    Biotechnol Bioeng; 1994 Nov; 44(10):1217-27. PubMed ID: 18618548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology.
    Lamboley L; Lacroix C; Champagne CP; Vuillemard JC
    Biotechnol Bioeng; 1997 Dec; 56(5):502-16. PubMed ID: 18642271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of effective diffusion coefficient and intrinsic kinetic parameters on azo dye biodegradation using PVA-immobilized cell beads.
    Chen KC; Wu JY; Yang WB; Hwang SC
    Biotechnol Bioeng; 2003 Sep; 83(7):821-32. PubMed ID: 12889022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of lactose in acidogenic biofilms.
    Yu J; Pinder KL
    Biotechnol Bioeng; 1993 Mar; 41(7):736-44. PubMed ID: 18609616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.