BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 18600923)

  • 1. A two-step enzymatic synthesis of dipeptides.
    Schwarz A; Wandrey C; Steinke D; Kula MR
    Biotechnol Bioeng; 1992 Jan; 39(2):132-40. PubMed ID: 18600923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-aminopeptidase-catalyzed biotransformations of beta(2)-dipeptides: kinetic resolution and enzymatic coupling.
    Heck T; Reimer A; Seebach D; Gardiner J; Deniau G; Lukaszuk A; Kohler HP; Geueke B
    Chembiochem; 2010 May; 11(8):1129-36. PubMed ID: 20340152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine proteinase-catalyzed incorporation of D-amino into model peptides in acetonitrile with low water content.
    Cerovský V
    Biomed Biochim Acta; 1991; 50(10-11):S44-9. PubMed ID: 1820059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide synthesis with immobilized carboxypeptidase Y.
    Cramer SM; Horváth C
    Biotechnol Bioeng; 1989 Jan; 33(3):344-53. PubMed ID: 18587923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates.
    Hayashi R; Bai Y; Hata T
    J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus.
    Arai T; Noguchi A; Takano E; Kino K
    J Biosci Bioeng; 2013 Apr; 115(4):382-7. PubMed ID: 23218487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the C-terminal amino acid amides by carboxypeptidase Y digestion and fast atom bombardment mass spectrometry.
    Kim J; Kim K
    Biochem Mol Biol Int; 1994 Nov; 34(5):897-907. PubMed ID: 7703906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinazoline antifolate thymidylate synthase inhibitors: gamma-linked L-D, D-D, and D-L dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583).
    Bavetsias V; Jackman AL; Kimbell R; Gibson W; Boyle FT; Bisset GM
    J Med Chem; 1996 Jan; 39(1):73-85. PubMed ID: 8568829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of N-dicyclopropylmethyl aspartyl-glycine synthone for backbone amide protection.
    Röder R; Henklein P; Weisshoff H; Mügge C; Pätzel M; Schubert U; Carpino LA; Henklein P
    J Pept Sci; 2010 Jan; 16(1):65-70. PubMed ID: 19924731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparative-scale enzyme-catalyzed peptide synthesis using solubilizing N-terminal protecting groups.
    Fischer A; Schwarz A; Wandrey C; Bommarius AS; Knaup G; Drauz K
    Biomed Biochim Acta; 1991; 50(10-11):S169-74. PubMed ID: 1840289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically controlled synthesis of dipeptides using ficin as biocatalyst.
    Monter B; Herzog B; Stehle P; Fürst P
    Biotechnol Appl Biochem; 1991 Oct; 14(2):183-91. PubMed ID: 1760130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene cloning, overexpression and biochemical characterization of the peptide amidase from Stenotrophomonas maltophilia.
    Neumann S; Kula MR
    Appl Microbiol Biotechnol; 2002 May; 58(6):772-80. PubMed ID: 12021798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity and reversibility of the transpeptidation reaction catalyzed by the Streptomyces R61 D-Ala-D-Ala peptidase.
    Rhazi N; Delmarcelle M; Sauvage E; Jacquemotte F; Devriendt K; Tallon V; Ghosez L; Frère JM
    Protein Sci; 2005 Nov; 14(11):2922-8. PubMed ID: 16199665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper(II)- cis, cis-1,3,5-triaminocyclohexane complex-promoted hydrolysis of dipeptides: kinetic, speciation and structural studies.
    Fujii Y; Kiss T; Gajda T; Tan XS; Sato T; Nakano Y; Hayashi Y; Yashiro M
    J Biol Inorg Chem; 2002 Sep; 7(7-8):843-51. PubMed ID: 12203021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated reactor concepts for the enzymatic kinetic synthesis of cephalexin.
    Schroën CG; Nierstrasz VA; Bosma R; Kroon PJ; Tjeerdsma PS; DeVroom E; VanderLaan JM; Moody HM; Beeftink HH; Janssen AE; Tramper J
    Biotechnol Bioeng; 2002 Oct; 80(2):144-55. PubMed ID: 12209770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New enzymatic protecting group techniques for the construction of peptides and glycopeptides.
    Waldmann H; Braun P; Kunz H
    Biomed Biochim Acta; 1991; 50(10-11):S243-8. PubMed ID: 1820053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and alpha-amino-epsilon-caprolactam racemase.
    Asano Y; Yamaguchi S
    J Am Chem Soc; 2005 Jun; 127(21):7696-7. PubMed ID: 15913357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.