BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18600985)

  • 1. Displacement effects in large-scale chromatography?
    Jungbauer A; Uhl K; Schulz P; Tauer C; Gruber G; Steindl F; Buchacher A; Schoenhofer W; Unterluggauer F
    Biotechnol Bioeng; 1992 Mar; 39(5):579-87. PubMed ID: 18600985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.
    Ishihara T; Kadoya T; Yamamoto S
    J Chromatogr A; 2007 Aug; 1162(1):34-40. PubMed ID: 17399733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical background of monolithic short layer ion-exchange chromatography for separation of charged large biomolecules or bioparticles.
    Yamamoto S; Yoshimoto N; Nishizumi Y
    J Chromatogr A; 2009 Mar; 1216(13):2612-5. PubMed ID: 19211103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion exchange chromatography of proteins-predictions of elution curves and operating conditions. II. Experimental verification.
    Yamamoto S; Nakanishi K; Matsuno R; Kamijubo T
    Biotechnol Bioeng; 1983 May; 25(5):1373-91. PubMed ID: 18548766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prediction and optimization of concentration conditions for preparative fractions by solid-phase extraction.
    Jin Y; Xue XY; Zhang FF; Zhang J; Shi H; Xiao YS; Ke YX; Liang XM
    J Sep Sci; 2008 Mar; 31(4):615-21. PubMed ID: 18266295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra scale-down approach to correct dispersive and retentive effects in small-scale columns when predicting larger scale elution profiles.
    Hutchinson N; Chhatre S; Baldascini H; Davies JL; Bracewell DG; Hoare M
    Biotechnol Prog; 2009; 25(4):1103-10. PubMed ID: 19569195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of elution curves for a protein mixture in ion exchange chromatography applied to high protein concentration.
    Orellana CA; Shene C; Asenjo JA
    Biotechnol Bioeng; 2009 Oct; 104(3):572-81. PubMed ID: 19593757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps.
    Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR
    Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding site and elution behavior of DNA and other large biomolecules in monolithic anion-exchange chromatography.
    Yamamoto S; Yoshimoto N; Tarmann C; Jungbauer A
    J Chromatogr A; 2009 Mar; 1216(13):2616-20. PubMed ID: 19201415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation-exchange displacement chromatography of proteins with protamine displacers: effect of induced salt gradients.
    Gerstner JA; Cramer SM
    Biotechnol Prog; 1992; 8(6):540-5. PubMed ID: 1369036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.
    Ishihara T; Kadoya T; Endo N; Yamamoto S
    J Chromatogr A; 2006 May; 1114(1):97-101. PubMed ID: 16530779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plate height determination for gradient elution chromatography of proteins.
    Yamamoto S
    Biotechnol Bioeng; 1995 Dec; 48(5):444-51. PubMed ID: 18623508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the theory of gradient liquid chromatography be useful in solving practical problems?
    Jandera P
    J Chromatogr A; 2006 Sep; 1126(1-2):195-218. PubMed ID: 16787650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [High performance liquid chromatography of nucleotides. Major methods and their development].
    Vul'fson AN; Iakimov SA
    Bioorg Khim; 1983 Mar; 9(3):365-90. PubMed ID: 6679772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental band compression factor of a neutral compound under high pressure gradient elution.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Dec; 1215(1-2):64-73. PubMed ID: 19027118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of recombinant brain derived neurotrophic factor using reversed phase displacement chromatography.
    Sunasara KM; Rupp RG; Cramer SM
    Biotechnol Prog; 2001; 17(5):897-906. PubMed ID: 11587582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of the inadvertent pH transient formed by a salt gradient in the ion-exchange chromatography of proteins.
    PĂ©rez JS; Frey DD
    Biotechnol Prog; 2005; 21(3):902-10. PubMed ID: 15932272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparative electrophoresis with on-column optical fiber monitoring and direct elution into a minimized volume.
    Jackson GW; Willson R
    Biotechnol Lett; 2005 Nov; 27(22):1739-43. PubMed ID: 16314963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.