These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18600987)

  • 1. On the calculation of the free energy change accompanying the growth of escherichia coli K-12 on succinic acid.
    Battley EH
    Biotechnol Bioeng; 1992 Mar; 39(6):589-95. PubMed ID: 18600987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of thermodynamic properties of protein in Escherichia coli K-12 grown on succinic acid, energy changes accompanying protein anabolism, and energetic role of ATP in protein synthesis.
    Battley EH
    Biotechnol Bioeng; 1992 Jun; 40(2):280-8. PubMed ID: 18601114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the heat of growth of Escherichia coli K-12 on succinic acid.
    Battley EH
    Biotechnol Bioeng; 1991 Feb; 37(4):334-43. PubMed ID: 18597375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the enthalpy of formation of Escherichia coli K-12 cells.
    Battley EH
    Biotechnol Bioeng; 1992 Jan; 39(1):5-12. PubMed ID: 18600880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternate method of calculating the heat of growth of Escherichia coli K-12 on succinic acid.
    Battley EH
    Biotechnol Bioeng; 1991 Aug; 38(5):480-92. PubMed ID: 18604806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of entropy change accompanying growth of Escherichia coli K-12 on succinic acid.
    Battley EH
    Biotechnol Bioeng; 1993 Feb; 41(4):422-8. PubMed ID: 18609570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic microbial metabolism can proceed close to thermodynamic limits.
    Jackson BE; McInerney MJ
    Nature; 2002 Jan; 415(6870):454-6. PubMed ID: 11807560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternate method of calculating the free-energy change accompanying the growth of saccharomyces cerevisiae (Hansen) on three substrates.
    Battley EH
    Biotechnol Bioeng; 1979 Nov; 21(11):1929-61. PubMed ID: 385077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic sodium, calcium and free energy change of the Na+/Ca2+-exchanger in rat ventricular myocytes.
    Baartscheer A; Schumacher CA; Fiolet JW
    J Mol Cell Cardiol; 1998 Nov; 30(11):2437-47. PubMed ID: 9925378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the b-subunit in the ATP synthase from Escherichia coli.
    Diez M; Börsch M; Zimmermann B; Turina P; Dunn SD; Gräber P
    Biochemistry; 2004 Feb; 43(4):1054-64. PubMed ID: 14744151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sources of thermal energy exchange accompanying microbial catabolism.
    Battley EH
    J Theor Biol; 2006 Jul; 241(1):142-51. PubMed ID: 16445944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved modification for the density-functional theory calculation of thermodynamic properties for C-H-O composite compounds.
    Liu MH; Chen C; Hong YS
    J Chem Phys; 2005 Feb; 122(6):064312. PubMed ID: 15740377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of cation-pi interactions to protein stability.
    Prajapati RS; Sirajuddin M; Durani V; Sreeramulu S; Varadarajan R
    Biochemistry; 2006 Dec; 45(50):15000-10. PubMed ID: 17154537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of ATP by the simple addition of ADP to the p-nitrophenyl phosphate-prepared phosphoenzyme of the sarcoplasmic reticulum Ca2+-ATPase.
    Ushimaru M; Fukushima Y
    Biochem Biophys Res Commun; 2007 Feb; 353(3):799-804. PubMed ID: 17196164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations.
    Goldbeck RA; Esquerra RM; Holt JM; Ackers GK; Kliger DS
    Biochemistry; 2004 Sep; 43(38):12048-64. PubMed ID: 15379545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A free energy calculation study of the effect of H-->F substitution on binding affinity in ligand-antibody interactions.
    Saito M; Okazaki I; Oda M; Fujii I
    J Comput Chem; 2005 Feb; 26(3):272-82. PubMed ID: 15614800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitting protein-folding free energy landscape for a certain conformation to an NK fitness landscape.
    Aita T; Husimi Y
    J Theor Biol; 2008 Jul; 253(1):151-61. PubMed ID: 18397795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.