These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 18601028)
1. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans. Natarajan KA Biotechnol Bioeng; 1992 Apr; 39(9):907-13. PubMed ID: 18601028 [TBL] [Abstract][Full Text] [Related]
2. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Konishi Y; Kubo H; Asai S Biotechnol Bioeng; 1992 Jan; 39(1):66-74. PubMed ID: 18600888 [TBL] [Abstract][Full Text] [Related]
4. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207 [TBL] [Abstract][Full Text] [Related]
5. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Dave SR Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759 [TBL] [Abstract][Full Text] [Related]
6. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy. Bevilaqua D; Diéz-Perez I; Fugivara CS; Sanz F; Benedetti AV; Garcia O Bioelectrochemistry; 2004 Aug; 64(1):79-84. PubMed ID: 15219250 [TBL] [Abstract][Full Text] [Related]
7. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of T. ferrooxidans (30 degrees C) and a thermophilic microorganism (55 degrees C). Mehta AP; Murr LE Biotechnol Bioeng; 1982 Apr; 24(4):919-40. PubMed ID: 18546380 [TBL] [Abstract][Full Text] [Related]
8. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Meruane G; Salhe C; Wiertz J; Vargas T Biotechnol Bioeng; 2002 Nov; 80(3):280-8. PubMed ID: 12226860 [TBL] [Abstract][Full Text] [Related]
9. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: I. Shake flask studies. Lizama HM; Suzuki I Biotechnol Bioeng; 1988 Jun; 32(1):110-6. PubMed ID: 18584725 [TBL] [Abstract][Full Text] [Related]
10. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Tao H; Dongwei L Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669 [TBL] [Abstract][Full Text] [Related]
11. Silicate mineral dissolution during heap bioleaching. Dopson M; Halinen AK; Rahunen N; Boström D; Sundkvist JE; Riekkola-Vanhanen M; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2008 Mar; 99(4):811-20. PubMed ID: 17705245 [TBL] [Abstract][Full Text] [Related]
12. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Chandra AP; Gerson AR Adv Colloid Interface Sci; 2009 Jan; 145(1-2):97-110. PubMed ID: 18851843 [TBL] [Abstract][Full Text] [Related]
13. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores. Harahuc L; Lizama HM; Suzuki I Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Konishi Y; Yoshida S; Asai S Biotechnol Bioeng; 1995 Dec; 48(6):592-600. PubMed ID: 18623527 [TBL] [Abstract][Full Text] [Related]
15. Effect of particle-particle shearing on the bioleaching of sulfide minerals. Chong N; Karamanev DG; Margaritis A Biotechnol Bioeng; 2002 Nov; 80(3):349-57. PubMed ID: 12226868 [TBL] [Abstract][Full Text] [Related]
16. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Rohwerder T; Gehrke T; Kinzler K; Sand W Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432 [TBL] [Abstract][Full Text] [Related]
17. Microbiological leaching of a chalcopyrite concentrate by Thiobacillus ferrooxidans. Sakaguchi H; Silver M Biotechnol Bioeng; 1976 Aug; 18(8):1091-1101. PubMed ID: 953169 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. Zhou H; Zhang R; Hu P; Zeng W; Xie Y; Wu C; Qiu G J Appl Microbiol; 2008 Aug; 105(2):591-601. PubMed ID: 18422958 [TBL] [Abstract][Full Text] [Related]
19. [Biological oxidation of sulfide raw material using a culture of Thiobacillus ferrooxidans under various conditions of leaching]. Fomchenko NV; Slavkina OV; Biriukov VV Prikl Biokhim Mikrobiol; 2003; 39(1):92-6. PubMed ID: 12625048 [TBL] [Abstract][Full Text] [Related]
20. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Pesic B; Oliver DJ; Wichlacz P Biotechnol Bioeng; 1989 Jan; 33(4):428-39. PubMed ID: 18587934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]