These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18601065)

  • 1. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation.
    Hoijnen JJ; van Loosdrecht MC; Tijhuis L
    Biotechnol Bioeng; 1992 Dec; 40(10):1139-54. PubMed ID: 18601065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms.
    Heijnen JJ; Van Dijken JP
    Biotechnol Bioeng; 1992 Apr; 39(8):833-58. PubMed ID: 18601018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth.
    Tijhuis L; Van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1993 Aug; 42(4):509-19. PubMed ID: 18613056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of microbial growth and metabolism: an analysis of the current situation.
    von Stockar U; Maskow T; Liu J; Marison IW; Patiño R
    J Biotechnol; 2006 Feb; 121(4):517-33. PubMed ID: 16185782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations.
    McCarty PL
    Biotechnol Bioeng; 2007 Jun; 97(2):377-88. PubMed ID: 17089390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comments on "In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms".
    Roels JA
    Biotechnol Bioeng; 1993 Nov; 42(9):1124-6: discussion 1127-30. PubMed ID: 18613242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new thermodynamically based correlation of chemotrophic biomass yields.
    Heijnen JJ
    Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-based models for environmental biotechnology.
    Rodríguez J; Lema JM; Kleerebezem R
    Trends Biotechnol; 2008 Jul; 26(7):366-74. PubMed ID: 18513813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process.
    Baratieri M; Baggio P; Fiori L; Grigiante M
    Bioresour Technol; 2008 Oct; 99(15):7063-73. PubMed ID: 18296047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate and energy costs of the production of exocellular enzymes by Bacillus licheniformis.
    Frankena J; Van Verseveld HW; Stouthamer AH
    Biotechnol Bioeng; 1988 Sep; 32(6):803-12. PubMed ID: 18587788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate.
    Rivas B; Torre P; Domínguez JM; Converti A
    Biotechnol Bioeng; 2009 Mar; 102(4):1062-73. PubMed ID: 18988265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy model and metabolic flux analysis for autotrophic nitrifiers.
    Poughon L; Dussap CG; Gros JB
    Biotechnol Bioeng; 2001 Feb; 72(4):416-33. PubMed ID: 11180062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of microcalorimetric monitoring in establishing continuous energy balances and in continuous determinations of substrate and product concentrations of batch-grown Saccharomyces cerevisiae.
    Larsson C; Blomberg A; Gustafson L
    Biotechnol Bioeng; 1991 Aug; 38(5):447-58. PubMed ID: 18604803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation.
    von Stockar U; Birou B
    Biotechnol Bioeng; 1989 Jun; 34(1):86-101. PubMed ID: 18588055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear relations in microbial reaction systems: a general overview of their origin, form, and use.
    Noorman HJ; Heijnen JJ; Ch A M Luyben K
    Biotechnol Bioeng; 1991 Sep; 38(6):603-18. PubMed ID: 18604879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded thermodynamic model for microbial true yield prediction.
    Xiao J; VanBriesen JM
    Biotechnol Bioeng; 2006 Jan; 93(1):110-21. PubMed ID: 16155947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.