These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 18601125)

  • 1. Chemostat cultivation of Candida blankii on sugar cane bagasse hemicellulose hydrolysate.
    Meyer PS; Du Preez JC; Kilian SG
    Biotechnol Bioeng; 1992 Jul; 40(3):353-8. PubMed ID: 18601125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast].
    Zhang HR; Zeng JZ; He CX; Fang H; Cai AH
    Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation.
    Brandberg T; Sanandaji N; Gustafsson L; Franzén CJ
    Biotechnol Prog; 2005; 21(4):1093-101. PubMed ID: 16080688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas.
    Lawford HG; Rousseau JD; McMillan JD
    Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate.
    Silva SS; Ribeiro JD; Felipe MG; Vitolo M
    Appl Biochem Biotechnol; 1997; 63-65():557-64. PubMed ID: 18576110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis.
    Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV
    Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of the cultivation temperature on the growth and chemical composition of the methanol-assimilating yeast Candida boidinii].
    Podgorskiĭ VS
    Mikrobiologiia; 1981; 50(5):852-6. PubMed ID: 7321915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate.
    Tsigie YA; Wang CY; Truong CT; Ju YH
    Bioresour Technol; 2011 Oct; 102(19):9216-22. PubMed ID: 21757339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous growth kinetics of Candida utilis in pineapple cannery effluent.
    Prior BA
    Biotechnol Bioeng; 1984 Jul; 26(7):748-52. PubMed ID: 18553441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction.
    Silva SS; Matos ZR; Carvalho W
    Biotechnol Prog; 2005; 21(5):1449-52. PubMed ID: 16209549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.
    Mussatto SI; Dragone G; Roberto IC
    Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wastepaper hydrolysate as soluble inducing substrate for cellulase production in continuous culture of trichoderma reesei.
    Ju LK; Afolabi OA
    Biotechnol Prog; 1999 Jan; 15(1):91-7. PubMed ID: 9933518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats.
    Nobre A; Duarte LC; Roseiro JC; Gírio FM
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):509-16. PubMed ID: 12172618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.