These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18601148)

  • 1. Heparin removal from blood using poly(L-lysine) immobilized hollow fiber.
    Ma X; Mohammad SF; Kim SW
    Biotechnol Bioeng; 1992 Aug; 40(4):530-6. PubMed ID: 18601148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for improving the functionality of an affinity bioreactor.
    Wang T; Yang Z; Emregul E; David A; Balthasar JP; Liang J; Yang VC
    Int J Pharm; 2005 Dec; 306(1-2):132-41. PubMed ID: 16246511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of antithrombin III and thrombin to immobilized heparin under flow conditions.
    Byun Y; Jacobs HA; Kim SW
    Biotechnol Prog; 1996; 12(2):217-25. PubMed ID: 8857192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protamine immobilization and heparin adsorption on the protamine-bound cellulose fiber membrane.
    Kim JS; Yang AJ; Yang VC
    Biotechnol Bioeng; 1992 Feb; 39(4):450-6. PubMed ID: 18600967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of antithrombin III with surface-immobilized albumin-heparin conjugates.
    van Delden CJ; Engbers GH; Feijen J
    J Biomed Mater Res; 1995 Nov; 29(11):1317-29. PubMed ID: 8582900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and ex vivo blood compatibility study of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer-coated hemodialysis hollow fibers.
    Iwasaki Y; Nakabayashi N; Ishihara K
    J Artif Organs; 2003; 6(4):260-6. PubMed ID: 14691668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of high-affinity heparin oligosaccharides to radiofrequency plasma-modified polyethylene.
    Yuan S; Szakalas-Gratzl G; Ziats NP; Jacobsen DW; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res; 1993 Jun; 27(6):811-9. PubMed ID: 8408111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption properties of poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) at a hydrophobic interface: influence of tribological stress, pH, salt concentration, and polymer molecular weight.
    Lee S; Spencer ND
    Langmuir; 2008 Sep; 24(17):9479-88. PubMed ID: 18652428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of polymer beads in the removal of heparin: toward the development of a novel reactor.
    Varghese MS; Hildebrandt D; Glasser D; Crowther NJ; Rubin DM
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(4):419-32. PubMed ID: 16818415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific antibody immobilization with biotin-poly(L-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips.
    Wen X; He H; Lee LJ
    J Immunol Methods; 2009 Oct; 350(1-2):97-105. PubMed ID: 19647744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of invertase immobilized on the poly(ethylene-co-vinyl alcohol) hollow fiber membrane.
    Shiomi T; Tohyama M; Satoh M; Miya M; Imai K
    Biotechnol Bioeng; 1988 Aug; 32(5):664-8. PubMed ID: 18587767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly designed surfaces for blood deheparinization using an immobilized heparin-binding peptide.
    Martins MC; Curtin SA; Freitas SC; Salgueiro P; Ratner BD; Barbosa MA
    J Biomed Mater Res A; 2009 Jan; 88(1):162-73. PubMed ID: 18286636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionality and stability of heparin immobilized onto poly(dimethylsiloxane).
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Oct; 45(2):76-81. PubMed ID: 16144760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of protamine hollow-fiber device for extracorporeal heparin removal.
    Liang JF; Emregul E; Yang VC
    Blood Purif; 2004; 22(2):198-202. PubMed ID: 15044818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma protein binding properties to immobilized heparin and heparin-albumin conjugate.
    Mirow N; Zimmermann B; Maleszka A; Knobl H; Tenderich G; Koerfer R; Herberg FW
    Artif Organs; 2007 Jun; 31(6):466-71. PubMed ID: 17537059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized enzyme cellulose hollow fibers: II. Kinetic analysis.
    Comfort AR; Albert E; Langer R
    Biotechnol Bioeng; 1989 Dec; 34(11):1374-82. PubMed ID: 18588080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding.
    Chuang TW; Lin DT; Lin FH
    J Biomed Mater Res A; 2008 Sep; 86(3):648-61. PubMed ID: 18022801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of coagulation by removing clotting factors part 1: in vitro feasibility study.
    Parker JT; Beutler DS; Sukavaneshvar S; Jacobs N; Solen KA; Mohammad SF
    ASAIO J; 2007; 53(4):415-20. PubMed ID: 17667224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel.
    Kim TG; Lee H; Jang Y; Park TG
    Biomacromolecules; 2009 Jun; 10(6):1532-9. PubMed ID: 19361215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.