These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 18601164)

  • 1. High stability to irreversible inactivation at elevated temperatures of enzymes covalently modified by hydrophilic reagents: alpha-Chymotrypsin.
    Mozhaev VV; Melik-Nubarov NS; Levitsky VY; Siksnis VA; Martinek K
    Biotechnol Bioeng; 1992 Sep; 40(6):650-62. PubMed ID: 18601164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correlation of enzyme thermostability and its surface hydrophobicity (using a modified alpha-chymotrypsin as an example)].
    Melik-Nubarov NS; Shikshnis VA; Slepnev VI; Shchegolev AA; Mozhaev VV
    Mol Biol (Mosk); 1990; 24(2):346-57. PubMed ID: 2362586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].
    Levitskiĭ VIu; Melik-Nubarov NS; Slepnev VI; Shikshnis VA; Mozhaev VV
    Mol Biol (Mosk); 1990; 24(5):1246-54. PubMed ID: 2290421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example].
    Kudriashova EV; Belova AB; Vinogradov AA; Mozhaev VV
    Bioorg Khim; 1994 Mar; 20(3):274-80. PubMed ID: 8166754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Unusual (saw-like) temperature dependence of the rate of irreversible thermoinactivation of enzymes].
    Shikshnis VA; Galkantaĭte NZ; Melik-Nubarov NS; Levitskiĭ VIu; Slepnev VI; Mozhaev VV
    Biokhimiia; 1990 Aug; 55(8):1347-55. PubMed ID: 2288981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein stabilization via hydrophilization. Covalent modification of trypsin and alpha-chymotrypsin.
    Mozhaev VV; Siksnis VA; Melik-Nubarov NS; Galkantaite NZ; Denis GJ; Butkus EP; Zaslavsky BYu ; Mestechkina NM; Martinek K
    Eur J Biochem; 1988 Apr; 173(1):147-54. PubMed ID: 2451606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chemical modification of lysine epsilon-NH2-groups in horseradish peroxidase. Its effect on enzyme stability. Temperature dependence of thermo-inactivation constants for native and modified peroxidase].
    Ugarova NN; Rozhkova GD; Berezin IV
    Biokhimiia; 1978 Aug; 43(8):1382-9. PubMed ID: 32926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Correlation between the stability of alpha-chymotrypsin at high temperatures and "salting in" of a strong solution].
    Levitskiĭ VIu; Panova AA; Mozhaev VV
    Biokhimiia; 1992 Oct; 57(10):1554-65. PubMed ID: 1457600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operational stability of copolymerized enzymes at elevated temperatures.
    Mozhaev VV; Siksnis VA; Torchilin VP; Martinek K
    Biotechnol Bioeng; 1983 Aug; 25(8):1937-45. PubMed ID: 18551540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Native, modified, and immobilized chymotrypsin in chaotropic media. Stabilization limits].
    Panova AA; Levitskiĭ VIu; Mozhaev VV
    Bioorg Khim; 1994 Jul; 20(7):809-16. PubMed ID: 7993381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of chemical modification on thermal stability of horseradish peroxidase].
    Ugarova NN; Brovko LIu; Rozhkova GD; Berezin IV
    Biokhimiia; 1977 Jul; 42(7):1212-20. PubMed ID: 409438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes.
    Zale SE; Klibanov AM
    Biotechnol Bioeng; 1983 Sep; 25(9):2221-30. PubMed ID: 18574817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme thermoinactivation in anhydrous organic solvents.
    Volkin DB; Staubli A; Langer R; Klibanov AM
    Biotechnol Bioeng; 1991 Apr; 37(9):843-53. PubMed ID: 18600684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima.
    Dams T; Jaenicke R
    Biochemistry; 1999 Jul; 38(28):9169-78. PubMed ID: 10413491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.
    Levitsky VYu ; Melik-Nubarov NS; Siksnis VA; Grinberg VYa ; Burova TV; Levashov AV; Mozhaev VV
    Eur J Biochem; 1994 Jan; 219(1-2):219-30. PubMed ID: 8306989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal denaturation pathway of starch phosphorylase from Corynebacterium callunae: oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein.
    Griessler R; D'Auria S; Tanfani F; Nidetzky B
    Protein Sci; 2000 Jun; 9(6):1149-61. PubMed ID: 10892808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56.
    Dragan AI; Potekhin SA; Sivolob A; Lu M; Privalov PL
    Biochemistry; 2004 Nov; 43(47):14891-900. PubMed ID: 15554696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.