These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18601289)

  • 1. Separation albumin-PEG: transmission of PEG through ultrafiltration membranes.
    Lentsch S; Aimar P; Orozco JL
    Biotechnol Bioeng; 1993 May; 41(11):1039-47. PubMed ID: 18601289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling.
    Meireles M; Aimar P; Sanchez V
    Biotechnol Bioeng; 1991 Aug; 38(5):528-34. PubMed ID: 18604811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of beta-casein peptides through UF inorganic membranes.
    Nau F; Kerhervé FL; Léonil J; Daufin G; Aimar P
    Bioseparation; 1992-1993; 3(4):205-15. PubMed ID: 1369244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an ultrasonic technique for in situ investigating the properties of deposited protein during crossflow ultrafiltration.
    Li J; Sanderson RD; Chai GY; Hallbauer DK
    J Colloid Interface Sci; 2005 Apr; 284(1):228-38. PubMed ID: 15752807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.
    Yu D; Chen X; Pelton R; Ghosh R
    Biotechnol Bioeng; 2008 Apr; 99(6):1434-42. PubMed ID: 17972326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved process for separation of proteins using modified chitosan-silica cross-linked charged ultrafilter membranes under coupled driving forces: isoelectric separation of proteins.
    Saxena A; Tripathi BP; Shahi VK
    J Colloid Interface Sci; 2008 Mar; 319(1):252-62. PubMed ID: 18068717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein fouling of virus filtration membranes: effects of membrane orientation and operating conditions.
    Syedain ZH; Bohonak DM; Zydney AL
    Biotechnol Prog; 2006; 22(4):1163-9. PubMed ID: 16889394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline.
    Lin CF; Yu-Chen Lin A; Sri Chandana P; Tsai CY
    Water Res; 2009 Feb; 43(2):389-94. PubMed ID: 19013630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation on the impact of polymeric substances on membrane fouling during sub-critical and critical flux operation of a municipal membrane bioreactor.
    Lyko S; Wintgens T; Melin T
    Water Sci Technol; 2008; 58(9):1849-55. PubMed ID: 19029728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes.
    Nghiem LD; Espendiller C; Braun G
    Water Sci Technol; 2008; 58(1):163-9. PubMed ID: 18653950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of amylase enzyme on ultrafiltration membranes.
    Beier SP; Enevoldsen AD; Kontogeorgis GM; Hansen EB; Jonsson G
    Langmuir; 2007 Aug; 23(18):9341-51. PubMed ID: 17676883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of macromolecules by ultrafiltration: removal of poly(ethylene glycol) from human albumin.
    Busby TF; Ingham KC
    J Biochem Biophys Methods; 1980 Apr; 2(4):191-206. PubMed ID: 7419867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-flow ultrafiltration of proteins through asymmetric polysulfonic membranes: I. Retention curves and pore size distributions.
    Prádanos P; Hernández A
    Biotechnol Bioeng; 1995 Sep; 47(6):617-25. PubMed ID: 18623442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the Permeate Flux during Microfiltration of BSA-Adsorbed Microspheres in a Stirred Cell.
    Choi SW; Yoon JY; Haam S; Jung JK; Kim JH; Kim WS
    J Colloid Interface Sci; 2000 Aug; 228(2):270-278. PubMed ID: 10926466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator.
    Nghiem LD; Vogel D; Khan S
    Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of free polyethylene glycol in PEGylated protein conjugate by size exclusion HPLC with refractive index (RI) detection.
    Li N; Ziegemeier D; Bass L; Wang W
    J Pharm Biomed Anal; 2008 Dec; 48(5):1332-8. PubMed ID: 19019609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global model for optimizing crossflow microfiltration and ultrafiltration processes: a new predictive and design tool.
    Baruah GL; Venkiteshwaran A; Belfort G
    Biotechnol Prog; 2005; 21(4):1013-25. PubMed ID: 16080678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective factors in the treatment of kerosene-water emulsion by using UF membranes.
    Rezvanpour A; Roostaazad R; Hesampour M; Nyström M; Ghotbi C
    J Hazard Mater; 2009 Jan; 161(2-3):1216-24. PubMed ID: 18539388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.