These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 18601385)
1. First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. Matsunaga K J Chem Phys; 2008 Jun; 128(24):245101. PubMed ID: 18601385 [TBL] [Abstract][Full Text] [Related]
2. Strontium substitution in bioactive calcium phosphates: a first-principles study. Matsunaga K; Murata H J Phys Chem B; 2009 Mar; 113(11):3584-9. PubMed ID: 19243110 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of incorporation of zinc into hydroxyapatite. Matsunaga K; Murata H; Mizoguchi T; Nakahira A Acta Biomater; 2010 Jun; 6(6):2289-93. PubMed ID: 19944784 [TBL] [Abstract][Full Text] [Related]
5. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Suzuki O; Kamakura S; Katagiri T; Nakamura M; Zhao B; Honda Y; Kamijo R Biomaterials; 2006 May; 27(13):2671-81. PubMed ID: 16413054 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. Tseng YH; Mou CY; Chan JC J Am Chem Soc; 2006 May; 128(21):6909-18. PubMed ID: 16719471 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. Wu LN; Genge BR; Wuthier RE J Inorg Biochem; 2009 Jul; 103(7):948-62. PubMed ID: 19477528 [TBL] [Abstract][Full Text] [Related]
11. Formation of calcium phosphates in gelatin with a novel diffusion system. Teng S; Shi J; Chen L Colloids Surf B Biointerfaces; 2006 Apr; 49(1):87-92. PubMed ID: 16621478 [TBL] [Abstract][Full Text] [Related]
12. The most appropriate (Ca+Zn)/P molar ratio to minimize the zinc content of ZnTCP/HAP ceramic used in the promotion of bone formation. Sogo Y; Sakurai T; Onuma K; Ito A J Biomed Mater Res; 2002 Dec; 62(3):457-63. PubMed ID: 12209932 [TBL] [Abstract][Full Text] [Related]
13. Subperiosteal implantation of octacalcium phosphate (OCP) stimulates both chondrogenesis and osteogenesis in the tibia, but only osteogenesis in the parietal bone of a rat. Sasano Y; Kamakura S; Nakamura M; Suzuki O; Mizoguchi I; Akita H; Kagayama M Anat Rec; 1995 May; 242(1):40-6. PubMed ID: 7604980 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of a novel beta-tricalcium phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties. Tamai M; Isama K; Nakaoka R; Tsuchiya T J Artif Organs; 2007; 10(1):22-8. PubMed ID: 17380293 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Suzuki O; Imaizumi H; Kamakura S; Katagiri T Curr Med Chem; 2008; 15(3):305-13. PubMed ID: 18288986 [TBL] [Abstract][Full Text] [Related]
16. Dehydrothermal treatment of collagen influences on bone regeneration by octacalcium phosphate (OCP) collagen composites. Kamakura S; Sasaki K; Honda Y; Anada T; Matsui K; Echigo S; Suzuki O J Tissue Eng Regen Med; 2007; 1(6):450-6. PubMed ID: 18265418 [TBL] [Abstract][Full Text] [Related]