These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 18601443)

  • 21. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure.
    Krishnan S; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2006 Oct; 34(10):1519-34. PubMed ID: 17013660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve.
    Smadi O; Hassan I; Pibarot P; Kadem L
    J Biomech; 2010 May; 43(8):1565-72. PubMed ID: 20188372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in-vitro investigation of prosthetic heart valve cavitation in blood.
    Garrison LA; Lamson TC; Deutsch S; Geselowitz DB; Gaumond RP; Tarbell JM
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S8-22; discussion S22-4. PubMed ID: 8061873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro pulsatile flow hemodynamics of five mechanical aortic heart valve prostheses.
    Walker PG; Yoganathan AP
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S113-23. PubMed ID: 1389270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow in prosthetic heart valves: state-of-the-art and future directions.
    Yoganathan AP; Chandran KB; Sotiropoulos F
    Ann Biomed Eng; 2005 Dec; 33(12):1689-94. PubMed ID: 16389514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve.
    Wang J; Yao H; Lim CJ; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2001 Mar; 10(2):254-262; discussion 263. PubMed ID: 11297213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment.
    Maymir JC; Deutsch S; Meyer RS; Geselowitz DB; Tarbell JM
    Ann Biomed Eng; 1998; 26(1):146-56. PubMed ID: 10355559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Closing behavior of a new bileaflet mechanical heart valve.
    Bluestein D; Menon S; Wu ZJ; Haubold A; Armitage TL; Hwang NH
    ASAIO J; 1993; 39(3):M398-402. PubMed ID: 8268566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage?
    Steegers A; Paul R; Reul H; Rau G
    J Heart Valve Dis; 1999 May; 8(3):312-23. PubMed ID: 10399668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occluder closing behavior: a key factor in mechanical heart valve cavitation.
    Wu ZJ; Wang Y; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S25-33; discussion S33-4. PubMed ID: 8061868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near valve flows and potential blood damage during closure of a bileaflet mechanical heart valve.
    Herbertson LH; Deutsch S; Manning KB
    J Biomech Eng; 2011 Sep; 133(9):094507. PubMed ID: 22010753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.