BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18601460)

  • 1. Chondrocyte damage and contact pressures following impact on the rabbit tibiofemoral joint.
    Isaac DI; Meyer EG; Haut RC
    J Biomech Eng; 2008 Aug; 130(4):041018. PubMed ID: 18601460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic changes in the rabbit tibial plateau following blunt trauma to the tibiofemoral joint.
    Isaac DI; Meyer EG; Kopke KS; Haut RC
    J Biomech; 2010 Jun; 43(9):1682-8. PubMed ID: 20399435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic changes in rabbit retro-patellar cartilage and subchondral bone after blunt impact loading of the patellofemoral joint.
    Ewers BJ; Weaver BT; Sevensma ET; Haut RC
    J Orthop Res; 2002 May; 20(3):545-50. PubMed ID: 12038629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral joint.
    Rundell SA; Baars DC; Phillips DM; Haut RC
    J Orthop Res; 2005 Nov; 23(6):1363-9. PubMed ID: 16099121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subfracture insult to the human cadaver patellofemoral joint produces occult injury.
    Atkinson PJ; Haut RC
    J Orthop Res; 1995 Nov; 13(6):936-44. PubMed ID: 8544032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute repair of chondrocytes in the rabbit tibiofemoral joint following blunt impact using P188 surfactant and a preliminary investigation of its long-term efficacy.
    Isaac DI; Golenberg N; Haut RC
    J Orthop Res; 2010 Apr; 28(4):553-8. PubMed ID: 19877289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage.
    Newberry WN; Zukosky DK; Haut RC
    J Orthop Res; 1997 May; 15(3):450-5. PubMed ID: 9246093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact pressures in the patellofemoral joint during impact loading on the human flexed knee.
    Haut RC
    J Orthop Res; 1989; 7(2):272-80. PubMed ID: 2918426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blunt impact causes changes in bone and cartilage in a regularly exercised animal model.
    Newberry WN; Mackenzie CD; Haut RC
    J Orthop Res; 1998 May; 16(3):348-54. PubMed ID: 9671930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteochondral microdamage from valgus bending of the human knee.
    Meyer EG; Villwock MR; Haut RC
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):577-82. PubMed ID: 19505750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants.
    Phillips DM; Haut RC
    J Orthop Res; 2004 Sep; 22(5):1135-42. PubMed ID: 15304290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injuries produced by blunt trauma to the human patellofemoral joint vary with flexion angle of the knee.
    Atkinson PJ; Haut RC
    J Orthop Res; 2001 Sep; 19(5):827-33. PubMed ID: 11562128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage.
    Milentijevic D; Rubel IF; Liew AS; Helfet DL; Torzilli PA
    J Orthop Trauma; 2005 Aug; 19(7):466-73. PubMed ID: 16056079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints.
    Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL
    Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage.
    Natoli RM; Athanasiou KA
    J Biomech Eng; 2008 Aug; 130(4):041012. PubMed ID: 18601454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of osteochondral graft insertion forces on chondrocyte viability.
    Patil S; Butcher W; D'Lima DD; Steklov N; Bugbee WD; Hoenecke HR
    Am J Sports Med; 2008 Sep; 36(9):1726-32. PubMed ID: 18490471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces.
    Lyons TJ; McClure SF; Stoddart RW; McClure J
    BMC Musculoskelet Disord; 2006 Jun; 7():52. PubMed ID: 16787529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals.
    Williams SK; Amiel D; Ball ST; Allen RT; Tontz WL; Emmerson BC; Badlani NM; Emery SC; Haghighi P; Bugbee WD
    Am J Sports Med; 2007 Dec; 35(12):2022-32. PubMed ID: 17724095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical properties of chondrocytes isolated from normal articular cartilage: experiment with rabbit knees].
    Wang XH; Wei XC; Zhang QY; Chen WY
    Zhonghua Yi Xue Za Zhi; 2007 Apr; 87(13):916-20. PubMed ID: 17650406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subchondral damage after acute transarticular loading: an in vitro model of joint injury.
    Vener MJ; Thompson RC; Lewis JL; Oegema TR
    J Orthop Res; 1992 Nov; 10(6):759-65. PubMed ID: 1403288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.