BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18601522)

  • 1. Quantification of cardiac fiber orientation using optical coherence tomography.
    Fleming CP; Ripplinger CM; Webb B; Efimov IR; Rollins AM
    J Biomed Opt; 2008; 13(3):030505. PubMed ID: 18601522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images.
    Yin X; Liu A; Thornburg KL; Wang RK; Rugonyi S
    J Biomed Opt; 2012 Sep; 17(9):96005-1. PubMed ID: 23085906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of the surfaces of the retinal layer from OCT images.
    Haeker M; Abràmoff M; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):800-7. PubMed ID: 17354964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography.
    Qi X; Pan Y; Hu Z; Kang W; Willis JE; Olowe K; Sivak MV; Rollins AM
    J Biomed Opt; 2008; 13(5):054055. PubMed ID: 19021435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contour detection of the cornea from OCT radial images.
    Graglia F; Mari JL; Baïkoff G; Sequeira J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5612-5. PubMed ID: 18003285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart.
    Liu A; Wang R; Thornburg KL; Rugonyi S
    J Biomed Opt; 2009; 14(4):044020. PubMed ID: 19725731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of two-dimensional and three-dimensional measurements of subpleural alveolar size parameters by optical coherence tomography.
    Unglert CI; Warger WC; Hostens J; Namati E; Birngruber R; Bouma BE; Tearney GJ
    J Biomed Opt; 2012 Dec; 17(12):126015. PubMed ID: 23235834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.
    Garvin MK; Abramoff MD; Kardon R; Russell SR; Wu X; Sonka M
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1495-505. PubMed ID: 18815101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.
    Haeker M; Abràmoff MD; Wu X; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):244-51. PubMed ID: 18051065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT).
    Li Q; Onozato ML; Andrews PM; Chen CW; Paek A; Naphas R; Yuan S; Jiang J; Cable A; Chen Y
    Opt Express; 2009 Aug; 17(18):16000-16. PubMed ID: 19724599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch.
    Pande P; Shrestha S; Park J; Serafino MJ; Gimenez-Conti I; Brandon J; Cheng YS; Applegate BE; Jo JA
    J Biomed Opt; 2014 Aug; 19(8):086022. PubMed ID: 25162909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images.
    Haeker M; Wu X; Abràmoff M; Kardon R; Sonka M
    Inf Process Med Imaging; 2007; 20():607-18. PubMed ID: 17633733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks.
    Gurmeric S; Isguder GG; Carlier S; Unal G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):776-85. PubMed ID: 20426182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse scattering for frequency-scanned full-field optical coherence tomography.
    Marks DL; Ralston TS; Boppart SA; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1034-41. PubMed ID: 17361289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating planar surface orientation using bispectral analysis.
    Farid H; Kosecká J
    IEEE Trans Image Process; 2007 Aug; 16(8):2154-60. PubMed ID: 17688220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 3-D shape reconstruction of retinal fundus.
    Choe TE; Cohen I; Medioni G; Walsh AC; Sadda SR
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):134-41. PubMed ID: 17354883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.