These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 18601548)
1. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. Xu C; Schmitt JM; Carlier SG; Virmani R J Biomed Opt; 2008; 13(3):034003. PubMed ID: 18601548 [TBL] [Abstract][Full Text] [Related]
2. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Schmitt JM; Knüttel A; Yadlowsky M; Eckhaus MA Phys Med Biol; 1994 Oct; 39(10):1705-20. PubMed ID: 15551540 [TBL] [Abstract][Full Text] [Related]
3. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. van der Meer FJ; Faber DJ; Baraznji Sassoon DM; Aalders MC; Pasterkamp G; van Leeuwen TG IEEE Trans Med Imaging; 2005 Oct; 24(10):1369-76. PubMed ID: 16229422 [TBL] [Abstract][Full Text] [Related]
4. Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Nguyen VD; Faber DJ; van der Pol E; van Leeuwen TG; Kalkman J Opt Express; 2013 Dec; 21(24):29145-56. PubMed ID: 24514466 [TBL] [Abstract][Full Text] [Related]
5. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds. Puhakka PH; Ylärinne JH; Lammi MJ; Saarakkala S; Tiitu V; Kröger H; Virén T; Jurvelin JS; Töyräs J Phys Med Biol; 2014 Nov; 59(21):6537-48. PubMed ID: 25310088 [TBL] [Abstract][Full Text] [Related]
6. Determination of the scattering anisotropy with optical coherence tomography. Kodach VM; Faber DJ; van Marle J; van Leeuwen TG; Kalkman J Opt Express; 2011 Mar; 19(7):6131-40. PubMed ID: 21451637 [TBL] [Abstract][Full Text] [Related]
7. Macrophagic enhancement in optical coherence tomography imaging by means of superparamagnetic iron oxide nanoparticles. Gutiérrez-Chico JL; Jaguszewski M; Comesaña-Hermo M; Correa-Duarte MÁ; Mariñas-Pardo L; Hermida-Prieto M Cardiol J; 2017; 24(5):459-466. PubMed ID: 28497842 [TBL] [Abstract][Full Text] [Related]
8. Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography. Lee P; Gao W; Zhang X Appl Opt; 2010 Jun; 49(18):3538-44. PubMed ID: 20563206 [TBL] [Abstract][Full Text] [Related]
9. Optical coherence tomography of basal cell carcinoma: density and signal attenuation. Yücel D; Themstrup L; Manfredi M; Jemec GB Skin Res Technol; 2016 Nov; 22(4):497-504. PubMed ID: 27264340 [TBL] [Abstract][Full Text] [Related]
11. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures. Thrane L; Frosz MH; Jørgensen TM; Tycho A; Yura HT; Andersen PE Opt Lett; 2004 Jul; 29(14):1641-3. PubMed ID: 15309845 [TBL] [Abstract][Full Text] [Related]
12. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime. Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868 [TBL] [Abstract][Full Text] [Related]
13. Optical coherence tomography for imaging the vulnerable plaque. Tearney GJ; Jang IK; Bouma BE J Biomed Opt; 2006; 11(2):021002. PubMed ID: 16674177 [TBL] [Abstract][Full Text] [Related]
14. Parametric imaging of cancer with optical coherence tomography. McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831 [TBL] [Abstract][Full Text] [Related]
15. Origin of low-coherence enhanced backscattering. Kim YL; Pradhan P; Subramanian H; Liu Y; Kim MH; Backman V Opt Lett; 2006 May; 31(10):1459-61. PubMed ID: 16642138 [TBL] [Abstract][Full Text] [Related]
16. Inverse scattering for optical coherence tomography. Ralston TS; Marks DL; Carney PS; Boppart SA J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1027-37. PubMed ID: 16642179 [TBL] [Abstract][Full Text] [Related]
17. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. Turchin IV; Sergeeva EA; Dolin LS; Kamensky VA; Shakhova NM; Richards-Kortum R J Biomed Opt; 2005; 10(6):064024. PubMed ID: 16409089 [TBL] [Abstract][Full Text] [Related]
19. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Celi S; Berti S Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844 [TBL] [Abstract][Full Text] [Related]
20. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. Wang Z; Kyono H; Bezerra HG; Wang H; Gargesha M; Alraies C; Xu C; Schmitt JM; Wilson DL; Costa MA; Rollins AM J Biomed Opt; 2010; 15(6):061711. PubMed ID: 21198159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]