These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18601556)

  • 41. Radial modulation of microbubbles for ultrasound contrast imaging.
    Bouakaz A; Versluis M; Borsboom J; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2283-90. PubMed ID: 18051162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advantages in using multi-frequency driving ultrasound for optimizing echo particle image velocimetry techniques.
    Zheng H; Mukdadi O; Hertzberg J; Shandas R
    Biomed Sci Instrum; 2004; 40():371-6. PubMed ID: 15133986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The correlation between bubble-enhanced HIFU heating and cavitation power.
    Farny CH; Glynn Holt R; Roy RA
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):175-84. PubMed ID: 19651548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Passive cavitation imaging with ultrasound arrays.
    Salgaonkar VA; Datta S; Holland CK; Mast TD
    J Acoust Soc Am; 2009 Dec; 126(6):3071-83. PubMed ID: 20000921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound.
    Zhang S; Li C; Zhou F; Wan M; Wang S
    J Ultrasound Med; 2014 Jun; 33(6):959-70. PubMed ID: 24866603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique.
    Zhang D; Gong Y; Gong X; Liu Z; Tan K; Zheng H
    Phys Med Biol; 2007 Sep; 52(18):5531-44. PubMed ID: 17804880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation.
    Ehsani M; Zhu N; Doan H; Lohi A; Abdelrasoul A
    Ultrason Sonochem; 2021 Sep; 77():105697. PubMed ID: 34388491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.
    Matsumoto H; Yoshimine Y; Akamine A
    J Endod; 2011 Jun; 37(6):839-43. PubMed ID: 21787501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pulse subtraction time delay imaging method for ultrasound contrast agent detection.
    Borsboom JM; Bouakaz A; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1151-8. PubMed ID: 19574123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound.
    Anand A; Savéry D; Hall C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):23-31. PubMed ID: 17225797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation.
    Chen S; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e123-6. PubMed ID: 16930662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology.
    Cho SY; Kwon O; Kim SC; Song H; Kim K; Choi MJ
    Investig Clin Urol; 2022 Jul; 63(4):385-393. PubMed ID: 35670003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Method for microbubble characterization using primary radiation force.
    Vos HJ; Guidi F; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1333-45. PubMed ID: 17718322
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.