BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18601559)

  • 1. Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer.
    Kortun C; Hijazi YR; Arifler D
    J Biomed Opt; 2008; 13(3):034014. PubMed ID: 18601559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues.
    Cihan C; Arifler D
    J Biomed Opt; 2011 Aug; 16(8):085002. PubMed ID: 21895310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study.
    Zhu C; Liu Q
    Opt Express; 2011 Aug; 19(18):17799-812. PubMed ID: 21935148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements.
    Chang SK; Arifler D; Drezek R; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):511-22. PubMed ID: 15189089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential oblique angle spectroscopy of the oral epithelium.
    Hattery D; Hattery B; Chernomordik V; Smith P; Loew M; Mulshine J; Gandjbakhche A
    J Biomed Opt; 2004; 9(5):951-60. PubMed ID: 15447016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition.
    Arifler D; Guillaud M; Carraro A; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2003 Jul; 8(3):484-94. PubMed ID: 12880355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light transport in tissue by 3D Monte Carlo: influence of boundary voxelization.
    Binzoni T; Leung TS; Giust R; Rüfenacht D; Gandjbakhche AH
    Comput Methods Programs Biomed; 2008 Jan; 89(1):14-23. PubMed ID: 18045725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models.
    Kao TC; Sung KB
    J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundary integral method for simulating laser short-pulse penetration into biological tissues.
    Ansari MA; Massudi R
    J Biomed Opt; 2010; 15(6):065009. PubMed ID: 21198173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical characterization of mammalian tissues by laser reflectometry and Monte Carlo simulation.
    Kumar D; Srinivasan R; Singh M
    Med Eng Phys; 2004 Jun; 26(5):363-9. PubMed ID: 15147744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography.
    Tanifuji T; Hijikata M
    IEEE Trans Med Imaging; 2002 Feb; 21(2):181-4. PubMed ID: 11929105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.