BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18601560)

  • 1. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis.
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1072-8. PubMed ID: 16512551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.
    Volynskaya Z; Haka AS; Bechtel KL; Fitzmaurice M; Shenk R; Wang N; Nazemi J; Dasari RR; Feld MS
    J Biomed Opt; 2008; 13(2):024012. PubMed ID: 18465975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model based and empirical spectral analysis for the diagnosis of breast cancer.
    Zhu C; Breslin TM; Harter J; Ramanujam N
    Opt Express; 2008 Sep; 16(19):14961-78. PubMed ID: 18795033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model.
    Finlay JC; Foster TH
    Appl Opt; 2005 Apr; 44(10):1917-33. PubMed ID: 15813528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast.
    Zhu C; Burnside ES; Sisney GA; Salkowski LR; Harter JM; Yu B; Ramanujam N
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2518-28. PubMed ID: 19272976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media.
    Palmer GM; Ramanujam N
    J Biomed Opt; 2008; 13(2):024017. PubMed ID: 18465980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy.
    Cerussi A; Shah N; Hsiang D; Durkin A; Butler J; Tromberg BJ
    J Biomed Opt; 2006; 11(4):044005. PubMed ID: 16965162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer.
    Kortun C; Hijazi YR; Arifler D
    J Biomed Opt; 2008; 13(3):034014. PubMed ID: 18601559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation.
    Finlay JC; Foster TH
    Med Phys; 2004 Jul; 31(7):1949-59. PubMed ID: 15305445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection.
    Fawzy YS; Petek M; Tercelj M; Zeng H
    J Biomed Opt; 2006; 11(4):044003. PubMed ID: 16965160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties.
    Pavlova I; Weber CR; Schwarz RA; Williams MD; Gillenwater AM; Richards-Kortum R
    J Biomed Opt; 2009; 14(1):014009. PubMed ID: 19256697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model.
    Nair MS; Ghosh N; Raju NS; Pradhan A
    Appl Opt; 2002 Jul; 41(19):4024-35. PubMed ID: 12099614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.