BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18601570)

  • 1. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence.
    Jeon RJ; Hellen A; Matvienko A; Mandelis A; Abrams SH; Amaechi BT
    J Biomed Opt; 2008; 13(3):034025. PubMed ID: 18601570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071406. PubMed ID: 21806252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence.
    Jeon RJ; Matvienko A; Mandelis A; Abrams SH; Amaechi BT; Kulkarni G
    J Biomed Opt; 2007; 12(3):034028. PubMed ID: 17614736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection ability and direction effect of photothermal-radiometry and modulated-luminescence for non-cavitated approximal caries.
    Xing H; Eckert GJ; Ando M
    J Dent; 2019 Nov; 90():103221. PubMed ID: 31678477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biophotonics; 2011 Nov; 4(11-12):788-804. PubMed ID: 21761572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth.
    Jeon RJ; Mandelis A; Sanchez V; Abrams SH
    J Biomed Opt; 2004; 9(4):804-19. PubMed ID: 15250769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence.
    Kim J; Mandelis A; Abrams SH; Vu JT; Amaechi BT
    J Biomed Opt; 2012 Dec; 17(12):127001. PubMed ID: 23203324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of angle on photothermal radiometry and modulated luminescence (PTR/LUM) value.
    Xing H; Eckert GJ; Ando M
    J Dent; 2023 May; 132():104500. PubMed ID: 37015184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence.
    Jeon RJ; Han C; Mandelis A; Sanchez V; Abrams SH
    Caries Res; 2004; 38(6):497-513. PubMed ID: 15528904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques.
    Ando M; van Der Veen MH; Schemehorn BR; Stookey GK
    Caries Res; 2001; 35(6):464-70. PubMed ID: 11799288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence.
    Nicolaides L; Feng C; Mandelis A; Abrams SH
    Appl Opt; 2002 Feb; 41(4):768-77. PubMed ID: 11993925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Centre Clinical Evaluation of Photothermal Radiometry and Luminescence Correlated with International Benchmarks for Caries Detection.
    Silvertown JD; Abrams SH; Sivagurunathan KS; Kennedy J; Jeon J; Mandelis A; Hellen A; Hellen W; Elman G; Ehrlich R; Chouljian R; Finer Y; Amaechi BT
    Open Dent J; 2017; 11():636-647. PubMed ID: 29290842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Lesion Baseline Severity and Mineral Distribution on Remineralization and Progression of Human and Bovine Dentin Caries Lesions.
    Lippert F; Churchley D; Lynch RJ
    Caries Res; 2015; 49(5):467-76. PubMed ID: 26228732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of photothermal radiometry and modulated luminescence, intraoral radiography, and cone beam computed tomography for detection of natural caries under restorations.
    Dayo AF; Amaechi BT; Noujeim M; Deahl ST; Gakunga P; Katkar R
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2020 May; 129(5):539-548. PubMed ID: 31956069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing two quantitative methods for studying remineralization of artificial caries.
    Lo EC; Zhi QH; Itthagarun A
    J Dent; 2010 Apr; 38(4):352-9. PubMed ID: 20079396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth.
    Tabatabaei N; Mandelis A; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071402. PubMed ID: 21806248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurements of remineralization of incipient caries.
    Linton JL
    Am J Orthod Dentofacial Orthop; 1996 Dec; 110(6):590-7. PubMed ID: 8972804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of laser fluorescence in the monitoring of the initial stage of the de-/remineralization process: an in vitro and in situ study.
    Spiguel MH; Tovo MF; Kramer PF; Franco KS; Alves KM; Delbem AC
    Caries Res; 2009; 43(4):302-7. PubMed ID: 19439952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of carious enamel to TiF
    Comar LP; Souza BM; Martins J; Santos MG; Buzalaf MAR; Magalhães AC
    J Dent; 2017 Aug; 63():81-84. PubMed ID: 28579385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.