BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18601622)

  • 1. A robust optical respiratory trigger for small rodents in clinical whole-body MR systems.
    Herrmann KH; Wagner E; Deistung A; Hilger I; Reichenbach JR
    Biomed Tech (Berl); 2008 Jun; 53(3):138-44. PubMed ID: 18601622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI compatible small animal monitoring and trigger system for whole body scanners.
    Herrmann KH; Pfeiffer N; Krumbein I; Herrmann L; Reichenbach JR
    Z Med Phys; 2014 Mar; 24(1):55-64. PubMed ID: 23962379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of functional cardiac MR imaging in mice using a clinical 3 Tesla whole body scanner.
    Bunck AC; Engelen MA; Schnackenburg B; Furkert J; Bremer C; Heindel W; Stypmann J; Maintz D
    Invest Radiol; 2009 Dec; 44(12):749-56. PubMed ID: 19838122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically detunable, inductively coupled coil for self-gating in small animal magnetic resonance imaging.
    Korn M; Umathum R; Schulz J; Semmler W; Bock M
    Magn Reson Med; 2011 Mar; 65(3):882-8. PubMed ID: 21337415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization evolution in balanced steady-state free precession with continuously moving table.
    Stafford RB; Sabati M; Mahallati H; Frayne R
    Phys Med Biol; 2007 Apr; 52(8):N173-84. PubMed ID: 17404452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging molecular and anatomical information: a feasibility study on rodents using microPET and MRI.
    Guo WY; Lee JJ; Lin MH; Yang CC; Chen CL; Huang YH; Tyan YS; Wu TH
    Nucl Med Commun; 2007 Oct; 28(10):804-12. PubMed ID: 17728611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo multiple-mouse MRI at 7 Tesla.
    Bock NA; Nieman BJ; Bishop JB; Mark Henkelman R
    Magn Reson Med; 2005 Nov; 54(5):1311-6. PubMed ID: 16215960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 128-channel body MRI with a flexible high-density receiver-coil array.
    Hardy CJ; Giaquinto RO; Piel JE; Rohling KW; Marinelli L; Blezek DJ; Fiveland EW; Darrow RD; Foo TK
    J Magn Reson Imaging; 2008 Nov; 28(5):1219-25. PubMed ID: 18972330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design].
    Adamietz B; Cavallaro A; Radkow T; Alibek S; Holter W; Bautz WA; Staatz G
    Rofo; 2007 Aug; 179(8):826-31. PubMed ID: 17577870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner.
    Poirier-Quinot M; Ginefri JC; Girard O; Robert P; Darrasse L
    Magn Reson Med; 2008 Oct; 60(4):917-27. PubMed ID: 18816812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections.
    Walrand S; Jamar F; de Jong M; Pauwels S
    J Nucl Med; 2005 Nov; 46(11):1872-80. PubMed ID: 16269602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope.
    Frauenrath T; Hezel F; Heinrichs U; Kozerke S; Utting JF; Kob M; Butenweg C; Boesiger P; Niendorf T
    Invest Radiol; 2009 Sep; 44(9):539-47. PubMed ID: 19652614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.
    Yuan J; Wei J; Shen GX
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1432-8. PubMed ID: 18815095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid polarizing field cycling in magnetic resonance imaging.
    Matter NI; Scott GC; Grafendorfer T; Macovski A; Conolly SM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):84-93. PubMed ID: 16398417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-high-field MRI of knee joint at 7.0T: preliminary experience.
    Pakin SK; Cavalcanti C; La Rocca R; Schweitzer ME; Regatte RR
    Acad Radiol; 2006 Sep; 13(9):1135-42. PubMed ID: 16935725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing.
    Jeneson JA; Schmitz JP; Hilbers PA; Nicolay K
    Magn Reson Med; 2010 Jan; 63(1):257-61. PubMed ID: 19918886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy.
    Vercauteren T; Perchant A; Malandain G; Pennec X; Ayache N
    Med Image Anal; 2006 Oct; 10(5):673-92. PubMed ID: 16887375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET.
    Mizuta T; Kitamura K; Iwata H; Yamagishi Y; Ohtani A; Tanaka K; Inoue Y
    Ann Nucl Med; 2008 Jun; 22(5):447-55. PubMed ID: 18600425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.