These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1860179)

  • 1. Directional characteristics of action potential propagation in cardiac muscle. A model study.
    Leon LJ; Roberge FA
    Circ Res; 1991 Aug; 69(2):378-95. PubMed ID: 1860179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural complexity effects on transverse propagation in a two-dimensional model of myocardium.
    Leon LJ; Roberge FA
    IEEE Trans Biomed Eng; 1991 Oct; 38(10):997-1009. PubMed ID: 1761300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.
    Roberge FA; Vinet A; Victorri B
    Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle.
    Delgado C; Steinhaus B; Delmar M; Chialvo DR; Jalife J
    Circ Res; 1990 Jul; 67(1):97-110. PubMed ID: 2364498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling and impulse propagation in anatomically modeled ventricular tissue.
    Muller-Borer BJ; Erdman DJ; Buchanan JW
    IEEE Trans Biomed Eng; 1994 May; 41(5):445-54. PubMed ID: 8070804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhomogeneity of cellular activation time and Vmax in normal myocardial tissue under electrical field stimulation.
    Taniguchi A; Toyama J; Kodama I; Anno T; Shirakawa M; Usui S
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H694-705. PubMed ID: 8067425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of two-dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics.
    Leon LJ; Roberge FA; Vinet A
    Ann Biomed Eng; 1994; 22(6):592-609. PubMed ID: 7872570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle.
    Delmar M; Michaels DC; Johnson T; Jalife J
    Circ Res; 1987 May; 60(5):780-5. PubMed ID: 3594750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of action potential propagation in an inhomogeneous sheet of coupled excitable cells.
    Joyner RW; Ramón F; Morre JW
    Circ Res; 1975 May; 36(5):654-61. PubMed ID: 1122575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse propagation in an expanded PSpice model for cardiac muscle with gap-junction ion channels.
    Ramasamy L; Sperelakis N
    Biomed Eng Online; 2006 Jul; 5():46. PubMed ID: 16875501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of activation in cardiac muscle.
    Roberge FA; Leon LJ
    J Electrocardiol; 1992; 25 Suppl():69-79. PubMed ID: 1297713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Vmax reflects both membrane properties and the load presented by adjoining cells.
    Spach MS; Heidlage JF; Darken ER; Hofer E; Raines KH; Starmer CF
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1855-63. PubMed ID: 1481909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations.
    Cole WC; Picone JB; Sperelakis N
    Biophys J; 1988 May; 53(5):809-18. PubMed ID: 3390522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.