These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 18602005)
1. Fluorescence-based methods in the study of protein-protein interactions in living cells. Ciruela F Curr Opin Biotechnol; 2008 Aug; 19(4):338-43. PubMed ID: 18602005 [TBL] [Abstract][Full Text] [Related]
2. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization. Gandía J; Lluís C; Ferré S; Franco R; Ciruela F Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019 [TBL] [Abstract][Full Text] [Related]
3. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Hébert TE; Galés C; Rebois RV Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566 [TBL] [Abstract][Full Text] [Related]
4. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Shyu YJ; Suarez CD; Hu CD Nat Protoc; 2008; 3(11):1693-702. PubMed ID: 18846096 [TBL] [Abstract][Full Text] [Related]
5. Novel tools for use in bioluminescence resonance energy transfer (BRET) assays. Robitaille M; Héroux I; Baragli A; Hébert TE Methods Mol Biol; 2009; 574():215-34. PubMed ID: 19685312 [TBL] [Abstract][Full Text] [Related]
6. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Fan JY; Cui ZQ; Wei HP; Zhang ZP; Zhou YF; Wang YP; Zhang XE Biochem Biophys Res Commun; 2008 Feb; 367(1):47-53. PubMed ID: 18158915 [TBL] [Abstract][Full Text] [Related]
7. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells. Molinari P; Casella I; Costa T Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039 [TBL] [Abstract][Full Text] [Related]
8. Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay. Weinthal D; Tzfira T Trends Plant Sci; 2009 Feb; 14(2):59-63. PubMed ID: 19150604 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer-based technologies in the study of protein-protein interactions at the cell surface. Fernández-Dueñas V; Llorente J; Gandía J; Borroto-Escuela DO; Agnati LF; Tasca CI; Fuxe K; Ciruela F Methods; 2012 Aug; 57(4):467-72. PubMed ID: 22683304 [TBL] [Abstract][Full Text] [Related]
10. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565 [TBL] [Abstract][Full Text] [Related]
11. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Shyu YJ; Hiatt SM; Duren HM; Ellis RE; Kerppola TK; Hu CD Nat Protoc; 2008; 3(4):588-96. PubMed ID: 18388940 [TBL] [Abstract][Full Text] [Related]
12. FRAP and FRET methods to study nuclear receptors in living cells. van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140 [TBL] [Abstract][Full Text] [Related]
13. Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Schütze K; Harter K; Chaban C Methods Mol Biol; 2009; 479():189-202. PubMed ID: 19083187 [TBL] [Abstract][Full Text] [Related]
14. The BRET technology and its application to screening assays. Bacart J; Corbel C; Jockers R; Bach S; Couturier C Biotechnol J; 2008 Mar; 3(3):311-24. PubMed ID: 18228541 [TBL] [Abstract][Full Text] [Related]
15. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. Gandia J; Galino J; Amaral OB; Soriano A; Lluís C; Franco R; Ciruela F FEBS Lett; 2008 Sep; 582(20):2979-84. PubMed ID: 18675812 [TBL] [Abstract][Full Text] [Related]
16. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET). Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109 [TBL] [Abstract][Full Text] [Related]
17. An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Kodama Y; Hu CD Biotechniques; 2010 Nov; 49(5):793-805. PubMed ID: 21091444 [TBL] [Abstract][Full Text] [Related]
18. Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage. Dacres H; Dumancic MM; Horne I; Trowell SC Biosens Bioelectron; 2009 Jan; 24(5):1164-70. PubMed ID: 18723336 [TBL] [Abstract][Full Text] [Related]
19. Localizing protein-protein interactions by bimolecular fluorescence complementation in planta. Citovsky V; Gafni Y; Tzfira T Methods; 2008 Jul; 45(3):196-206. PubMed ID: 18586107 [TBL] [Abstract][Full Text] [Related]
20. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Pfleger KD; Dromey JR; Dalrymple MB; Lim EM; Thomas WG; Eidne KA Cell Signal; 2006 Oct; 18(10):1664-70. PubMed ID: 16492395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]