These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 18602367)
1. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Mak P; Jaggi M; Syed V; Chauhan SC; Hassan S; Biswas H; Balaji KC Biochem Biophys Res Commun; 2008 Sep; 373(4):618-23. PubMed ID: 18602367 [TBL] [Abstract][Full Text] [Related]
2. Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Zhang L; Zhao Z; Xu S; Tandon M; LaValle CR; Deng F; Wang QJ Oncotarget; 2017 Feb; 8(8):12800-12811. PubMed ID: 28077787 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of MAPK-signaling pathway promotes the interaction of the corepressor SMRT with the human androgen receptor and mediates repression of prostate cancer cell growth in the presence of antiandrogens. Eisold M; Asim M; Eskelinen H; Linke T; Baniahmad A J Mol Endocrinol; 2009 May; 42(5):429-35. PubMed ID: 19223455 [TBL] [Abstract][Full Text] [Related]
4. p68/DdX5 supports β-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer. Clark EL; Hadjimichael C; Temperley R; Barnard A; Fuller-Pace FV; Robson CN PLoS One; 2013; 8(1):e54150. PubMed ID: 23349811 [TBL] [Abstract][Full Text] [Related]
5. The CCAAT enhancer-binding protein-alpha negatively regulates the transactivation of androgen receptor in prostate cancer cells. Chattopadhyay S; Gong EY; Hwang M; Park E; Lee HJ; Hong CY; Choi HS; Cheong JH; Kwon HB; Lee K Mol Endocrinol; 2006 May; 20(5):984-95. PubMed ID: 16455820 [TBL] [Abstract][Full Text] [Related]
6. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Burd CJ; Petre CE; Morey LM; Wang Y; Revelo MP; Haiman CA; Lu S; Fenoglio-Preiser CM; Li J; Knudsen ES; Wong J; Knudsen KE Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2190-5. PubMed ID: 16461912 [TBL] [Abstract][Full Text] [Related]
7. Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells. Cinar B; Yeung F; Konaka H; Mayo MW; Freeman MR; Zhau HE; Chung LW Biochem J; 2004 Apr; 379(Pt 2):421-31. PubMed ID: 14715080 [TBL] [Abstract][Full Text] [Related]
8. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. Esmaeili M; Jennek S; Ludwig S; Klitzsch A; Kraft F; Melle C; Baniahmad A J Mol Cell Biol; 2016 Jun; 8(3):207-20. PubMed ID: 26993046 [TBL] [Abstract][Full Text] [Related]
9. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Hassan S; Biswas MH; Zhang C; Du C; Balaji KC Oncogene; 2009 Dec; 28(49):4386-96. PubMed ID: 19767773 [TBL] [Abstract][Full Text] [Related]
10. FOXM1 promotes the progression of prostate cancer by regulating PSA gene transcription. Liu Y; Liu Y; Yuan B; Yin L; Peng Y; Yu X; Zhou W; Gong Z; Liu J; He L; Li X Oncotarget; 2017 Mar; 8(10):17027-17037. PubMed ID: 28199985 [TBL] [Abstract][Full Text] [Related]
11. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Choi HE; Shin JS; Leem DG; Kim SD; Cho WJ; Lee KT Chem Biol Interact; 2016 Dec; 260():196-207. PubMed ID: 27720946 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Liu Y; Majumder S; McCall W; Sartor CI; Mohler JL; Gregory CW; Earp HS; Whang YE Cancer Res; 2005 Apr; 65(8):3404-9. PubMed ID: 15833875 [TBL] [Abstract][Full Text] [Related]
13. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Clark EL; Coulson A; Dalgliesh C; Rajan P; Nicol SM; Fleming S; Heer R; Gaughan L; Leung HY; Elliott DJ; Fuller-Pace FV; Robson CN Cancer Res; 2008 Oct; 68(19):7938-46. PubMed ID: 18829551 [TBL] [Abstract][Full Text] [Related]
14. Krüppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer. He HJ; Gu XF; Xu WH; Yang DJ; Wang XM; Su Y Acta Pharmacol Sin; 2013 Feb; 34(2):282-8. PubMed ID: 23023312 [TBL] [Abstract][Full Text] [Related]
16. Gum mastic inhibits the expression and function of the androgen receptor in prostate cancer cells. He ML; Yuan HQ; Jiang AL; Gong AY; Chen WW; Zhang PJ; Young CY; Zhang JY Cancer; 2006 Jun; 106(12):2547-55. PubMed ID: 16691616 [TBL] [Abstract][Full Text] [Related]
17. Differential transactivation by the androgen receptor in prostate cancer cells. Snoek R; Bruchovsky N; Kasper S; Matusik RJ; Gleave M; Sato N; Mawji NR; Rennie PS Prostate; 1998 Sep; 36(4):256-63. PubMed ID: 9719026 [TBL] [Abstract][Full Text] [Related]
18. A novel synthetic compound that interrupts androgen receptor signaling in human prostate cancer cells. Lu S; Wang A; Lu S; Dong Z Mol Cancer Ther; 2007 Jul; 6(7):2057-64. PubMed ID: 17620434 [TBL] [Abstract][Full Text] [Related]
19. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Sadar MD; Gleave ME Cancer Res; 2000 Oct; 60(20):5825-31. PubMed ID: 11059779 [TBL] [Abstract][Full Text] [Related]
20. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. Karacosta LG; Foster BA; Azabdaftari G; Feliciano DM; Edelman AM J Biol Chem; 2012 Jul; 287(29):24832-43. PubMed ID: 22654108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]