BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18602459)

  • 1. In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors.
    Croera C; Ferrario D; Gribaldo L
    Toxicol In Vitro; 2008 Sep; 22(6):1555-61. PubMed ID: 18602459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes.
    Cho TM; Rose RL; Hodgson E
    Drug Metab Dispos; 2006 Jan; 34(1):176-83. PubMed ID: 16243959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of chlorpyrifos-oxon and other xenobiotics on the human cytochrome P450-dependent metabolism of naphthalene and deet.
    Cho TM; Rose RL; Hodgson E
    Drug Metabol Drug Interact; 2007; 22(4):235-62. PubMed ID: 18447001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the toxic metabolite(s) of naphthalene.
    Wilson AS; Davis CD; Williams DP; Buckpitt AR; Pirmohamed M; Park BK
    Toxicology; 1996 Dec; 114(3):233-42. PubMed ID: 8980712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol.
    Doherty MD; Cohen GM; Smith MT
    Biochem Pharmacol; 1984 Feb; 33(4):543-9. PubMed ID: 6200119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urinary naphthols as an indicator of exposure to naphthalene.
    Bieniek G
    Scand J Work Environ Health; 1997 Dec; 23(6):414-20. PubMed ID: 9476804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P-450 dependent metabolic activation of 1-naphthol to naphthoquinones and covalent binding species.
    Doherty MA; Makowski R; Gibson GG; Cohen GM
    Biochem Pharmacol; 1985 Jul; 34(13):2261-7. PubMed ID: 4015675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that 1-naphthol is not an obligate intermediate in the covalent binding and the pulmonary bronchiolar necrosis by naphthalene.
    Buckpitt AR; Bahnson LS; Franklin RB
    Biochem Biophys Res Commun; 1985 Feb; 126(3):1097-103. PubMed ID: 3977906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of naphthalene by Cunninghamella elegans.
    Cerniglia CE; Gibson DT
    Appl Environ Microbiol; 1977 Oct; 34(4):363-70. PubMed ID: 921262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of cytotoxic and genotoxic effects of naphthalene, 1-naphthol and 2-naphthol on human lymphocyte culture.
    Kapuci M; Ulker Z; Gurkan S; Alpsoy L
    Toxicol Ind Health; 2014 Feb; 30(1):82-9. PubMed ID: 22740618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of naphthalene and naphthalene metabolites on the in vitro humoral immune response.
    Kawabata TT; White KL
    J Toxicol Environ Health; 1990 May; 30(1):53-67. PubMed ID: 2348480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of 1-naphthol to naphthoquinone metabolites by rat liver microsomes: demonstration by high-performance liquid chromatography with reductive electrochemical detection.
    Fluck DS; Rappaport SM; Eastmond DA; Smith MT
    Arch Biochem Biophys; 1984 Dec; 235(2):351-8. PubMed ID: 6517596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells.
    Chichester CH; Buckpitt AR; Chang A; Plopper CG
    Mol Pharmacol; 1994 Apr; 45(4):664-72. PubMed ID: 8183245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic activation of 1-naphthol by rat liver microsomes to 1,4-naphthoquinone and covalent binding species.
    Doherty MD; Cohen GM
    Biochem Pharmacol; 1984 Oct; 33(20):3201-8. PubMed ID: 6487366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytokine-dependent ex vivo expansion of early subsets of CD34+ cord blood myeloid progenitors is enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored.
    Ruggieri L; Heimfeld S; Broxmeyer HE
    Blood Cells; 1994; 20(2-3):436-54. PubMed ID: 7538350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of inorganic arsenic and its metabolites on haematopoietic progenitors "in vitro": comparison between species and sexes.
    Ferrario D; Croera C; Brustio R; Collotta A; Bowe G; Vahter M; Gribaldo L
    Toxicology; 2008 Jul; 249(2-3):102-8. PubMed ID: 18524450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of human cord blood progenitor cell growth by recombinant human interleukin 3 (IL-3), IL-6, granulocyte-macrophage colony stimulating factor (GM-CSF) and stem cell factor (SCF) in serum-supplemented and serum-free medium.
    De Bruyn C; Delforge A; Bron D; Ley P; de Hemptinne D; Stryckmans P
    Stem Cells; 1994 Nov; 12(6):616-25. PubMed ID: 7533580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA. Implications for the mechanism of tumor initiation by naphthalene.
    Saeed M; Higginbotham S; Rogan E; Cavalieri E
    Chem Biol Interact; 2007 Feb; 165(3):175-88. PubMed ID: 17224140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of early hematopoietic precursors in human cord blood.
    Abboud M; Xu F; LaVia M; Laver J
    Exp Hematol; 1992 Oct; 20(9):1043-7. PubMed ID: 1281782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo murine studies on the biochemical mechanism of naphthalene cataractogenesis.
    Wells PG; Wilson B; Lubek BM
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):466-73. PubMed ID: 2749733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.