These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18602462)

  • 21. Brain neurons which project to the spinal cord in young larvae of the zebrafish.
    Kimmel CB; Powell SL; Metcalfe WK
    J Comp Neurol; 1982 Feb; 205(2):112-27. PubMed ID: 7076887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serotonin and GABA are colocalized in restricted groups of neurons in the larval sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates.
    Barreiro-Iglesias A; Cornide-Petronio ME; Anadón R; Rodicio MC
    J Anat; 2009 Oct; 215(4):435-43. PubMed ID: 19552725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of early brainstem projections to the tail spinal cord of Xenopus.
    Nordlander RH; Baden ST; Ryba TM
    J Comp Neurol; 1985 Jan; 231(4):519-29. PubMed ID: 3968253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origins of serotonergic projections to the lumbar spinal cord in the monkey using a combined retrograde transport and immunocytochemical technique.
    Bowker RM; Westlund KN; Coulter JD
    Brain Res Bull; 1982; 9(1-6):271-8. PubMed ID: 6756550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems.
    Barreiro-Iglesias A; Fernández-López B; Sobrido-Cameán D; Anadón R
    J Comp Neurol; 2017 Dec; 525(17):3683-3704. PubMed ID: 28771712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the vestibular apparatus and central vestibular connections in a wallaby (Macropus eugenii).
    McCluskey SU; Marotte LR; Ashwell KW
    Brain Behav Evol; 2008; 71(4):271-86. PubMed ID: 18431054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system.
    Cornide-Petronio ME; Anadón R; Barreiro-Iglesias A; Rodicio MC
    Brain Struct Funct; 2013 Sep; 218(5):1317-35. PubMed ID: 23052550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Projections of lamprey spinal neurons determined by the retrograde axonal transport of horseradish peroxidase.
    Tang D; Selzer ME
    J Comp Neurol; 1979 Dec; 188(4):629-45. PubMed ID: 391835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear organization and morphology of serotonergic neurons in the brain of the Nile crocodile, Crocodylus niloticus.
    Rodrigues SL; Maseko BC; Ihunwo AO; Fuxe K; Manger PR
    J Chem Neuroanat; 2008 Jan; 35(1):133-45. PubMed ID: 17923387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.
    Gilland E; Straka H; Wong TW; Baker R; Zottoli SJ
    J Comp Neurol; 2014 Jul; 522(10):2446-64. PubMed ID: 24452830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The origins of descending spinal projections in lepidosirenid lungfishes.
    Ronan MC; Northcutt RG
    J Comp Neurol; 1985 Nov; 241(4):435-44. PubMed ID: 4078041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry.
    López JM; Morona R; Moreno N; Domínguez L; González A
    Neurosci Lett; 2007 Sep; 425(2):73-7. PubMed ID: 17822845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study.
    Villar-Cerviño V; Barreiro-Iglesias A; Fernández-López B; Mazan S; Rodicio MC; Anadón R
    J Comp Neurol; 2013 Feb; 521(3):522-57. PubMed ID: 22791297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of descending projections from the brainstem to the spinal cord in the fetal sheep.
    Stockx EM; Anderson CR; Murphy SM; Cooke IR; Berger PJ
    BMC Neurosci; 2007 Jun; 8():40. PubMed ID: 17577416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin.
    Sánchez-Camacho C; Marín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):186-208. PubMed ID: 11331524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell proliferation in the lamprey central nervous system.
    Vidal Pizarro I; Swain GP; Selzer ME
    J Comp Neurol; 2004 Feb; 469(2):298-310. PubMed ID: 14694540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.