These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Pérez B; Del Valle M; Alegret S; Merkoçi A Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
5. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Liu A Biosens Bioelectron; 2008 Oct; 24(2):167-77. PubMed ID: 18524566 [TBL] [Abstract][Full Text] [Related]
6. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Chen X; Chen J; Deng C; Xiao C; Yang Y; Nie Z; Yao S Talanta; 2008 Aug; 76(4):763-7. PubMed ID: 18656655 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Barsan MM; Ghica ME; Brett CM Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Yang W; Ratinac KR; Ringer SP; Thordarson P; Gooding JJ; Braet F Angew Chem Int Ed Engl; 2010 Mar; 49(12):2114-38. PubMed ID: 20187048 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Le Goff A; Holzinger M; Cosnier S Analyst; 2011 Apr; 136(7):1279-87. PubMed ID: 21311804 [TBL] [Abstract][Full Text] [Related]
11. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes. Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979 [TBL] [Abstract][Full Text] [Related]
13. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Wang J; Musameh M; Lin Y J Am Chem Soc; 2003 Mar; 125(9):2408-9. PubMed ID: 12603125 [TBL] [Abstract][Full Text] [Related]
14. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine. Wen J; Zhou L; Jin L; Cao X; Ye BC J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1793-8. PubMed ID: 19473890 [TBL] [Abstract][Full Text] [Related]
15. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M; Shang L; Li B; Huang L; Dong S Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode. Dong S; Zhang S; Chi L; He P; Wang Q; Fang Y Anal Biochem; 2008 Oct; 381(2):199-204. PubMed ID: 18522798 [TBL] [Abstract][Full Text] [Related]
17. [Carbon nanotube-based biosensors for DNA structure characterization]. Abdullin TI; Bondar' OV; Rizvanov AA; Nikitina II Prikl Biokhim Mikrobiol; 2009; 45(2):252-6. PubMed ID: 19382717 [TBL] [Abstract][Full Text] [Related]
18. Use of nanomaterials for impedimetric DNA sensors: a review. Bonanni A; del Valle M Anal Chim Acta; 2010 Sep; 678(1):7-17. PubMed ID: 20869498 [TBL] [Abstract][Full Text] [Related]