These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18602550)

  • 1. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic droplet-based liquid-liquid extraction.
    Mary P; Studer V; Tabeling P
    Anal Chem; 2008 Apr; 80(8):2680-7. PubMed ID: 18351786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape.
    Ajdari A; Bontoux N; Stone HA
    Anal Chem; 2006 Jan; 78(2):387-92. PubMed ID: 16408918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and functional evaluation of a microfluidic blood flow device.
    Gilbert RJ; Park H; Rasponi M; Redaelli A; Gellman B; Dasse KA; Thorsen T
    ASAIO J; 2007; 53(4):447-55. PubMed ID: 17667229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak compression and resolution for electrophoretic separations in diverging microchannels.
    Ross D; Ivory CF; Locascio LE; Van Cott KE
    Electrophoresis; 2004 Nov; 25(21-22):3694-704. PubMed ID: 15565692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic transport through rectangular channels with small zeta potentials.
    Dutta D
    J Colloid Interface Sci; 2007 Nov; 315(2):740-6. PubMed ID: 17761188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on band dispersion in channels structured with micropillars.
    De Pra M; Kok WT; Gardeniers JG; Desmet G; Eeltink S; van Nieuwkasteele JW; Schoenmakers PJ
    Anal Chem; 2006 Sep; 78(18):6519-25. PubMed ID: 16970329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Langevin theory on the dynamics of simple fluids under external fields.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2005 Jul; 123(3):34504. PubMed ID: 16080741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies.
    Cegla FB
    J Acoust Soc Am; 2008 Jun; 123(6):4218-26. PubMed ID: 18537373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic transport through rough microchannels.
    Hu Y; Werner C; Li D
    Anal Chem; 2003 Nov; 75(21):5747-58. PubMed ID: 14588014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface motion of capillary-driven flow in rectangular microchannel.
    Ichikawa N; Hosokawa K; Maeda R
    J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building up longitudinal concentration gradients in shallow microchannels.
    Goulpeau J; Lonetti B; Trouchet D; Ajdari A; Tabeling P
    Lab Chip; 2007 Sep; 7(9):1154-61. PubMed ID: 17713614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid flow past an aperture in a microfluidic channel.
    Peterman MC; Noolandi J; Blumenkranz MS; Fishman HA
    Anal Chem; 2004 Apr; 76(7):1850-6. PubMed ID: 15053643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of first-dimension undersampling on effective peak capacity in comprehensive two-dimensional separations.
    Davis JM; Stoll DR; Carr PW
    Anal Chem; 2008 Jan; 80(2):461-73. PubMed ID: 18076145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pressure driven injection system for an ultra-flat chromatographic microchannel.
    Chmela E; Blom MT; Gardeniers HJ; van den Berg A; Tijssen R
    Lab Chip; 2002 Nov; 2(4):235-41. PubMed ID: 15100817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.