These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 18602785)
1. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Georgiadis P; Cavouras D; Kalatzis I; Glotsos D; Athanasiadis E; Kostopoulos S; Sifaki K; Malamas M; Nikiforidis G; Solomou E Magn Reson Imaging; 2009 Jan; 27(1):120-30. PubMed ID: 18602785 [TBL] [Abstract][Full Text] [Related]
2. Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Georgiadis P; Cavouras D; Kalatzis I; Daskalakis A; Kagadis GC; Sifaki K; Malamas M; Nikiforidis G; Solomou E Comput Methods Programs Biomed; 2008 Jan; 89(1):24-32. PubMed ID: 18053610 [TBL] [Abstract][Full Text] [Related]
3. Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. Georgiadis P; Kostopoulos S; Cavouras D; Glotsos D; Kalatzis I; Sifaki K; Malamas M; Solomou E; Nikiforidis G Magn Reson Imaging; 2011 May; 29(4):525-35. PubMed ID: 21315534 [TBL] [Abstract][Full Text] [Related]
4. Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema. Server A; Kulle B; Maehlen J; Josefsen R; Schellhorn T; Kumar T; Langberg CW; Nakstad PH Acta Radiol; 2009 Jul; 50(6):682-9. PubMed ID: 19449234 [TBL] [Abstract][Full Text] [Related]
5. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212 [TBL] [Abstract][Full Text] [Related]
6. Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Theocharakis P; Glotsos D; Kalatzis I; Kostopoulos S; Georgiadis P; Sifaki K; Tsakouridou K; Malamas M; Delibasis G; Cavouras D; Nikiforidis G Magn Reson Imaging; 2009 Apr; 27(3):417-22. PubMed ID: 18786795 [TBL] [Abstract][Full Text] [Related]
7. Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Svolos P; Tsolaki E; Kapsalaki E; Theodorou K; Fountas K; Fezoulidis I; Tsougos I Magn Reson Imaging; 2013 Nov; 31(9):1567-77. PubMed ID: 23906533 [TBL] [Abstract][Full Text] [Related]
8. Gadolinium-enhanced three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging is superior to spin-echo imaging in delineating brain metastases. Takeda T; Takeda A; Nagaoka T; Kunieda E; Takemasa K; Watanabe M; Hatou T; Oguro S; Katayama M Acta Radiol; 2008 Dec; 49(10):1167-73. PubMed ID: 18979271 [TBL] [Abstract][Full Text] [Related]
9. Automated computer differential classification in Parkinsonian Syndromes via pattern analysis on MRI. Duchesne S; Rolland Y; Vérin M Acad Radiol; 2009 Jan; 16(1):61-70. PubMed ID: 19064213 [TBL] [Abstract][Full Text] [Related]
10. The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. Devos A; Simonetti AW; van der Graaf M; Lukas L; Suykens JA; Vanhamme L; Buydens LM; Heerschap A; Van Huffel S J Magn Reson; 2005 Apr; 173(2):218-28. PubMed ID: 15780914 [TBL] [Abstract][Full Text] [Related]
11. Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. Simonetti AW; Melssen WJ; Szabo de Edelenyi F; van Asten JJ; Heerschap A; Buydens LM NMR Biomed; 2005 Feb; 18(1):34-43. PubMed ID: 15657908 [TBL] [Abstract][Full Text] [Related]
12. Semi-automated brain tumor and edema segmentation using MRI. Xie K; Yang J; Zhang ZG; Zhu YM Eur J Radiol; 2005 Oct; 56(1):12-9. PubMed ID: 16168259 [TBL] [Abstract][Full Text] [Related]
13. Computer-assisted identification of the central sulcus in patients with brain tumors using MRI. Uwano I; Kameda M; Inoue T; Nishimoto H; Fujiwara S; Hirooka R; Ogawa A J Magn Reson Imaging; 2008 Jun; 27(6):1242-9. PubMed ID: 18421684 [TBL] [Abstract][Full Text] [Related]
14. Segmenting brain tumors using pseudo-conditional random fields. Lee CH; Wang S; Murtha A; Brown MR; Greiner R Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):359-66. PubMed ID: 18979767 [TBL] [Abstract][Full Text] [Related]
15. A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. Luts J; Heerschap A; Suykens JA; Van Huffel S Artif Intell Med; 2007 Jun; 40(2):87-102. PubMed ID: 17466495 [TBL] [Abstract][Full Text] [Related]
16. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Wang J; Kong J; Lu Y; Qi M; Zhang B Comput Med Imaging Graph; 2008 Dec; 32(8):685-98. PubMed ID: 18818051 [TBL] [Abstract][Full Text] [Related]
17. 3D image texture analysis of simulated and real-world vascular trees. Kociński M; Klepaczko A; Materka A; Chekenya M; Lundervold A Comput Methods Programs Biomed; 2012 Aug; 107(2):140-54. PubMed ID: 21803438 [TBL] [Abstract][Full Text] [Related]
18. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863 [TBL] [Abstract][Full Text] [Related]