BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18603361)

  • 1. Treating high-mercury-containing lamps using full-scale thermal desorption technology.
    Chang TC; You SJ; Yu BS; Chen CM; Chiu YC
    J Hazard Mater; 2009 Mar; 162(2-3):967-72. PubMed ID: 18603361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury recovery from cold cathode fluorescent lamps using thermal desorption technology.
    Chang TC; Chen CM; Lee YF; You SJ
    Waste Manag Res; 2010 May; 28(5):455-60. PubMed ID: 19723829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps.
    Durão WA; de Castro CA; Windmöller CC
    Waste Manag; 2008 Nov; 28(11):2311-9. PubMed ID: 18096377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stocks and environmental release of mercury in backlight cold cathode fluorescence lamps.
    Zhuang X; Wang Y; Yuan W; Bai J; Wang J
    Waste Manag Res; 2018 Sep; 36(9):849-856. PubMed ID: 30014768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
    Rey-Raap N; Gallardo A
    Waste Manag; 2012 May; 32(5):944-8. PubMed ID: 22206740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of mercury bonded in residual glass from spent fluorescent lamps.
    Rey-Raap N; Gallardo A
    J Environ Manage; 2013 Jan; 115():175-8. PubMed ID: 23262405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation in fluorescent lamps by thermal release analysis.
    Raposo C; Windmöller CC; Durão WA
    Waste Manag; 2003; 23(10):879-86. PubMed ID: 14614922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing occupational mercury exposures during the on-site processing of spent fluorescent lamps.
    Lucas A; Emery R
    J Environ Health; 2006 Mar; 68(7):30-4, 40, 45. PubMed ID: 16583552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
    Tan Q; Li J
    Waste Manag Res; 2016 Jan; 34(1):67-74. PubMed ID: 26628052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.
    Innocenzi V; De Michelis I; Ferella F; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2390-6. PubMed ID: 23831004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.
    Arendt JD; Katers JF
    Waste Manag Res; 2013 Jul; 31(7):764-72. PubMed ID: 23635464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs).
    Salthammer T; Uhde E; Omelan A; Lüdecke A; Moriske HJ
    Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A straightforward wet-chemistry method for the determination of solid and gaseous mercury fractions in Backlight Cold Cathode Fluorescence Lamps.
    Figi R; Nagel O; Hagendorfer H
    Talanta; 2012 Oct; 100():134-8. PubMed ID: 23141320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing mercury vapor release from broken fluorescent lamps during shipping.
    Glenz TT; Brosseau LM; Hoffbeck RW
    J Air Waste Manag Assoc; 2009 Mar; 59(3):266-72. PubMed ID: 19320265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.