BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18604662)

  • 21. Novel co-axial electrohydrodynamic in-situ preparation of liquid-filled polymer-shell microspheres for biomedical applications.
    Farook U; Edirisinghe MJ; Stride E; Colombo P
    J Microencapsul; 2008 Jun; 25(4):241-7. PubMed ID: 18473195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of gold nanoparticles on the stability of microbubbles.
    Mohamedi G; Azmin M; Pastoriza-Santos I; Huang V; Pérez-Juste J; Liz-Marzán LM; Edirisinghe M; Stride E
    Langmuir; 2012 Oct; 28(39):13808-15. PubMed ID: 22928997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures.
    Segers T; Lassus A; Bussat P; Gaud E; Frinking P
    Lab Chip; 2018 Dec; 19(1):158-167. PubMed ID: 30511070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sonicated X-ray contrast agents for quantitative myocardial contrast echocardiography--a critical approach.
    Mayer IV; Lazarov MP; Utzinger U; Freiburghaus AU; Hess OM
    Heart Vessels; 1995; 10(2):96-105. PubMed ID: 7782270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation, stability, and mechanical properties of bovine serum albumin stabilized air bubbles produced using coaxial electrohydrodynamic atomization.
    Mahalingam S; Meinders MB; Edirisinghe M
    Langmuir; 2014 Jun; 30(23):6694-703. PubMed ID: 24841724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correspondence - Nonlinear oscillations of deflating bubbles.
    Viti J; Mori R; Guidi F; Versluis M; Jong ND; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2818-24. PubMed ID: 23221232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-Step Preparation of Magnetic Lipid Bubbles: Magnetothermal Effect Induces the Simultaneous Formation of Gas Nuclei and Self-Assembly of Phospholipids.
    Wang K; Zhang M; Geng Z; Zhang S; Deng Z; Tan J; Zhang Q; Jiao Z; Gu N
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):30755-30765. PubMed ID: 38847111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear shell behavior of phospholipid-coated microbubbles.
    Overvelde M; Garbin V; Sijl J; Dollet B; de Jong N; Lohse D; Versluis M
    Ultrasound Med Biol; 2010 Dec; 36(12):2080-92. PubMed ID: 21030140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment.
    Kok MP; Segers T; Versluis M
    Lab Chip; 2015; 15(18):3716-22. PubMed ID: 26223966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.
    Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A
    Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability and rheological behavior of concentrated monodisperse food emulsifier coated microbubble suspensions.
    Shen Y; Longo ML; Powell RL
    J Colloid Interface Sci; 2008 Nov; 327(1):204-10. PubMed ID: 18774143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery.
    Chattaraj R; Hwang M; Zemerov SD; Dmochowski IJ; Hammer DA; Lee D; Sehgal CM
    Adv Healthc Mater; 2020 May; 9(9):e1901721. PubMed ID: 32207250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation, characterization and in vivo observation of phospholipid-based gas-filled microbubbles containing hirudin.
    Zhao YZ; Liang HD; Mei XG; Halliwell M
    Ultrasound Med Biol; 2005 Sep; 31(9):1237-43. PubMed ID: 16176790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the size distribution of lipid-coated bubbles via fluidity regulation.
    Wang CH; Yeh CK
    Ultrasound Med Biol; 2013 May; 39(5):882-92. PubMed ID: 23453628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.