These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 18604804)

  • 1. Proliferation of anchorage-dependent contact-inhibited cells: I. Development of theoretical models based on cellular automata.
    Zygourakis K; Bizios R; Markenscoff P
    Biotechnol Bioeng; 1991 Aug; 38(5):459-70. PubMed ID: 18604804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation of anchorage-dependent contact-inhibited cells. II: experimental results and validation of the theoretical models.
    Zygourakis K; Markenscoff P; Bizios R
    Biotechnol Bioeng; 1991 Aug; 38(5):471-9. PubMed ID: 18604805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture.
    Möhler L; Bock A; Reichl U
    Biotechnol Prog; 2008; 24(1):110-9. PubMed ID: 18171074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal design of metabolic flux analysis experiments for anchorage-dependent mammalian cells using a cellular automaton model.
    Meadows AL; Roy S; Clark DS; Blanch HW
    Biotechnol Bioeng; 2007 Sep; 98(1):221-9. PubMed ID: 17657779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cellular automaton model for the proliferation of migrating contact-inhibited cells.
    Lee Y; Kouvroukoglou S; McIntire LV; Zygourakis K
    Biophys J; 1995 Oct; 69(4):1284-98. PubMed ID: 8534799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic model to simulate the growth of anchorage dependent cells on flat surfaces.
    Lim JH; Davies GA
    Biotechnol Bioeng; 1990 Sep; 36(6):547-62. PubMed ID: 18595113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution.
    Wahl A; Sidorenko Y; Dauner M; Genzel Y; Reichl U
    Biotechnol Bioeng; 2008 Sep; 101(1):135-52. PubMed ID: 18646224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model.
    Higuera G; Schop D; Janssen F; van Dijkhuizen-Radersma R; van Boxtel T; van Blitterswijk CA
    Tissue Eng Part A; 2009 Sep; 15(9):2653-63. PubMed ID: 19207045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cellular automata model of chromatography.
    Kier LB; Cheng CK; Karnes HT
    Biomed Chromatogr; 2000 Dec; 14(8):530-4. PubMed ID: 11113936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing.
    Farhadifar R; Röper JC; Aigouy B; Eaton S; Jülicher F
    Curr Biol; 2007 Dec; 17(24):2095-104. PubMed ID: 18082406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of regulatory mechanisms in yeast colony development.
    Walther T; Reinsch H; Grosse A; Ostermann K; Deutsch A; Bley T
    J Theor Biol; 2004 Aug; 229(3):327-38. PubMed ID: 15234200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel population balance model to investigate the kinetics of in vitro cell proliferation: part I. Model development.
    Fadda S; Cincotti A; Cao G
    Biotechnol Bioeng; 2012 Mar; 109(3):772-81. PubMed ID: 22081270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cellular automaton model for microcarrier cultures.
    Hawboldt KA; Kalogerakis N; Behie LA
    Biotechnol Bioeng; 1994 Jan; 43(1):90-100. PubMed ID: 18613314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reaction-diffusion model for long bones growth.
    Garzón-Alvarado DA; García-Aznar JM; Doblaré M
    Biomech Model Mechanobiol; 2009 Oct; 8(5):381-95. PubMed ID: 19107533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipogenesis licensing and execution are disparately linked to cell proliferation.
    Guo W; Zhang KM; Tu K; Li YX; Zhu L; Xiao HS; Yang Y; Wu JR
    Cell Res; 2009 Feb; 19(2):216-23. PubMed ID: 19065151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cellular automata approach to biological pattern formation. (II): The growth pattern of bacterial colonies].
    Zhao F; Tao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):820-3. PubMed ID: 17899753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell proliferation alterations in Chlorella cells under stress conditions.
    Rioboo C; O'Connor JE; Prado R; Herrero C; Cid A
    Aquat Toxicol; 2009 Sep; 94(3):229-37. PubMed ID: 19679360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of contact-inhibited animal cell growth on flat surfaces and spheres.
    Cherry RS; Papoutsakis ET
    Biotechnol Bioeng; 1989 Jan; 33(3):300-5. PubMed ID: 18587917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of berberine on the differentiation and apoptosis of K562 cell line].
    Jin L; Liao HJ; Zhang MY; Liu QY; Wang YF
    Zhong Yao Cai; 2009 Mar; 32(3):384-8. PubMed ID: 19565717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization phenomena in surface-reaction models of protocells.
    Serra R; Carletti T; Poli I
    Artif Life; 2007; 13(2):123-38. PubMed ID: 17355188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.