These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18605382)

  • 21. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A modified batch reactor system to study equilibrium-reactive transport problems.
    Jeppu GP; Clement TP; Barnett MO; Lee KK
    J Contam Hydrol; 2012 Mar; 129-130():2-9. PubMed ID: 22136983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.
    Biswas K; Bandhopadhyay D; Ghosh UC
    J Environ Sci Eng; 2008 Apr; 50(2):153-62. PubMed ID: 19295101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific surface chemical interactions between hydrous ferric oxide and iron-reducing bacteria determined using pK(a) spectra.
    Smith DS; Ferris FG
    J Colloid Interface Sci; 2003 Oct; 266(1):60-7. PubMed ID: 12957582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of phosphorus from solution using biogenic iron oxides.
    Rentz JA; Turner IP; Ullman JL
    Water Res; 2009 Apr; 43(7):2029-35. PubMed ID: 19298996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide.
    Mayes WM; Potter HA; Jarvis AP
    J Hazard Mater; 2009 Feb; 162(1):512-20. PubMed ID: 18583040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part I--performance.
    Newcombe RL; Rule RA; Hart BK; Möller G
    Water Environ Res; 2008 Mar; 80(3):238-47. PubMed ID: 18419012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs.
    Zhang H; Elskens M; Chen G; Chou L
    Chemosphere; 2019 Jun; 225():352-359. PubMed ID: 30884296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides.
    Bjerrum CJ; Canfield DE
    Nature; 2002 May; 417(6885):159-62. PubMed ID: 12000956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface complexation of Pb(II) on amorphous iron oxide and manganese oxide: spectroscopic and time studies.
    Xu Y; Boonfueng T; Axe L; Maeng S; Tyson T
    J Colloid Interface Sci; 2006 Jul; 299(1):28-40. PubMed ID: 16483594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic Modeling of Phosphate Adsorption by Preformed and In situ formed Hydrous Ferric Oxides at Circumneutral pH.
    Mao Y; Yue Q
    Sci Rep; 2016 Oct; 6():35292. PubMed ID: 27739456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel regeneration method for phosphate loaded granular ferric (hydr)oxide--a contribution to phosphorus recycling.
    Kunaschk M; Schmalz V; Dietrich N; Dittmar T; Worch E
    Water Res; 2015 Mar; 71():219-26. PubMed ID: 25618522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Goethite surface reactivity: II. A microscopic site-density model that describes its surface area-normalized variability.
    Villalobos M; Cheney MA; Alcaraz-Cienfuegos J
    J Colloid Interface Sci; 2009 Aug; 336(2):412-22. PubMed ID: 19464697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous removal of N and P in a SBR with production of valuable compounds: application to concentrated wastewaters.
    Sperandio M; Pambrun V; Paul E
    Water Sci Technol; 2008; 58(4):859-64. PubMed ID: 18776622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus availability for beneficial use in biosolids products.
    Hogan F; McHugh M; Morton S
    Environ Technol; 2001 Nov; 22(11):1347-53. PubMed ID: 11804356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.
    Zhang G; Liu H; Liu R; Qu J
    J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of phosphorus from livestock effluents.
    Szogi AA; Vanotti MB
    J Environ Qual; 2009; 38(2):576-86. PubMed ID: 19202028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: structures, reaction energies, and transition states.
    Adamescu A; Hamilton IP; Al-Abadleh HA
    J Phys Chem A; 2014 Jul; 118(30):5667-79. PubMed ID: 25007345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.