These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 186055)

  • 1. 25-Hydroxycholecalciferol and 1, 25-dihydroxycholecalciferol are potent inhibitors of cholesterol biosynthesis by normal and leukemic (L2C) guinea pig lymphocytes.
    Philippot JR; Cooper AG; Wallach DF
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1035-41. PubMed ID: 186055
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of cholesterol biosynthesis by normal and leukemic (L2C) guinea pig lymphocytes.
    Philippot JR; Cooper AG; Wallach DF
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):956-60. PubMed ID: 265587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma lipoproteins of leukemic guinea pigs (L2C) can regulate cholesterol biosynthesis by lymphocytes of normal guinea pigs. A comparative study of plasma lipoproteins of normal and neoplastic animals.
    Chuillon Sainte-Marie J; Authier MH; Cayzac M; Philippot JR
    Eur J Biochem; 1981 Jun; 117(1):219-24. PubMed ID: 7262087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cholesterol biosynthesis at a stage after the 3-hydroxy-3-methylglutaryl-CoA reductase step, in normal and leukemic (L2C) guinea pig lymphocytes.
    Tabacik C; Aliau S; Sainte-Marie J
    Biochim Biophys Acta; 1987 Sep; 921(2):405-10. PubMed ID: 3651496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anitroxide-sterol derivative potently modifies cholesterol biosynthesis by normal and neoplastic guinea pig lymphocytes.
    Philippot JR; Cooper AG; Wallach DF
    Biochim Biophys Acta; 1975 Sep; 406(1):161-6. PubMed ID: 1174575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of low density lipoprotein receptors in freshly isolated leukemic guinea pig lymphocytes (L2C).
    Sainte-Marie J; Vidal M; Philippot JR; Bienvenüe A
    J Recept Res; 1985; 5(2-3):171-92. PubMed ID: 4032367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internalization of low-density-lipoprotein-specific receptors in leukemic guinea pig lymphocytes.
    Sainte-Marie J; Vidal M; Philippot JR; Bienvenue A
    Eur J Biochem; 1986 Aug; 158(3):569-74. PubMed ID: 3732284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological activity of 1alpha-hydroxycholecalciferol, a synthetic analog of the hormonal form of vitamin D3.
    Haussler MR; Zerwekh JE; Hesse RH; Rizzardo E; Pechet MM
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2248-52. PubMed ID: 4365368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1, 25-Dihydroxycholecalciferol and induction of alkaline phosphatase in organ culture.
    Yoshizawa S; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(3):263-5. PubMed ID: 184263
    [No Abstract]   [Full Text] [Related]  

  • 10. In vivo studies in chicks and rats of bone calcium mobilization by 1 alpha,25-dihydroxycholecalciferol (calcitriol) and its congeners.
    Boris A; Hurley JF; Trmal T
    J Nutr; 1979 Oct; 109(10):1772-8. PubMed ID: 226665
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of dietary protein on the biological activity of cholecalciferol and its metabolites in the rachitic rat.
    Raghuramulu N; DeLuca HF
    J Nutr; 1980 Jan; 110(1):28-34. PubMed ID: 6243702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological activity of 24,25-dihydroxycholecalciferol in chicks and rats.
    Henry HL; Norman AW; Taylor AN; Hartenbower DL; Coburn JW
    J Nutr; 1976 Jun; 106(6):724-34. PubMed ID: 178843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the internalization efficiency of LDL and transferrin receptors on L2C guinea pig lymphocytes.
    Vidal M; Sainte-Marie J; Philippot JR; Bienvenue A
    FEBS Lett; 1986 Feb; 196(2):242-6. PubMed ID: 3005033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of 25-hydroxycholecalciferol metabolism by 1,25-dihydroxycholecalciferol in relation to phosphate concentrations [proceedings].
    Barrett DI; Brown D; Colston KW; MacIntyre I; Raptis P; Spanos E
    J Endocrinol; 1978 Nov; 79(2):35P-36P. PubMed ID: 731160
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of oestrogen and 1,25-dihydroxycholecalciferol on 25-hydroxycholecalciferol metabolism in primary chick kidney-cell cultures.
    Spanos E; Barrett DI; Chong KT; MacIntyre I
    Biochem J; 1978 Jul; 174(1):231-6. PubMed ID: 697754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect to cholecalciferol and 1,25-Dihydroxycholecalciferol on the intestinal absorption of zinc in the chick.
    Koo SI; Fullmer CS; Wasserman RH
    J Nutr; 1980 Sep; 110(9):1813-8. PubMed ID: 6251186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation by vitamin D of intestinal phosphate absorption.
    Peterlik M; Wasserman RH
    Horm Metab Res; 1980 May; 12(5):216-9. PubMed ID: 6248445
    [No Abstract]   [Full Text] [Related]  

  • 18. Hydroxylation of carbon-24 of 25-hydroxycholecalciferol is not necessary for normal embryonic development in chickens.
    Hart LE; DeLuca HF; Yamada S; Takayama H
    J Nutr; 1984 Nov; 114(11):2059-65. PubMed ID: 6333502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback regulation of vitamin D metabolism by 1,25-dihydroxycholecalciferol.
    Colston KW; Evans IM; Spelsberg TC; MacIntyre I
    Biochem J; 1977 Apr; 164(1):83-9. PubMed ID: 195583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological effects of 1alpha-hydroxycholecalciferol (1alpha-OH-D3) and its metabolites.
    Miyakoshi H; Aoki T; Hirasawa Y
    Clin Nephrol; 1981 Sep; 16(3):119-25. PubMed ID: 6895354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.