These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 186058)

  • 1. Nucleoside diphosphate kinase activity associated with ribonucleotide reductase.
    von Döbeln U
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1160-8. PubMed ID: 186058
    [No Abstract]   [Full Text] [Related]  

  • 2. A simple method to purify ribonucleotide reductase.
    Spector T; Averett DR
    Anal Biochem; 1983 Oct; 134(2):467-70. PubMed ID: 6316808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a high activity form of ribonucleoside diphosphate reductase from Escherichia coli.
    Lunn CA; Pigiet V
    J Biol Chem; 1979 Jun; 254(12):5008-14. PubMed ID: 221457
    [No Abstract]   [Full Text] [Related]  

  • 4. Improvement of a simple method to purify ribonucleotide reductase.
    Spector T
    Prep Biochem; 1985; 15(3):183-8. PubMed ID: 2997768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric regulation of calf thymus ribonucleoside diphosphate reductase.
    Eriksson S; Thelander L; Akerman M
    Biochemistry; 1979 Jul; 18(14):2948-52. PubMed ID: 223624
    [No Abstract]   [Full Text] [Related]  

  • 6. Nucleoside diphosphate kinase from Myxococcus xanthus. II. Biochemical characterization.
    Muñoz-Dorado J; Inouye S; Inouye M
    J Biol Chem; 1990 Feb; 265(5):2707-12. PubMed ID: 2154456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosidediphosphate kinase in Escherichia coli: its polypeptide structure and reaction intermediate.
    Ohtsuki K; Yokoyama M; Koike T; Ishida N
    Biochem Int; 1984 May; 8(5):715-23. PubMed ID: 6089829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A monoisozymic nucleoside diphosphate kinase capable of complete phosphorylation.
    Robinson JB; Brems DN; Stellwagen E
    J Biol Chem; 1981 Nov; 256(21):10769-73. PubMed ID: 6270129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T4 phage gene 32 protein as a candidate organizing factor for the deoxyribonucleoside triphosphate synthetase complex.
    Wheeler LJ; Ray NB; Ungermann C; Hendricks SP; Bernard MA; Hanson ES; Mathews CK
    J Biol Chem; 1996 May; 271(19):11156-62. PubMed ID: 8626661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleoside diphosphate reductase (Escherichia coli).
    Thelander L; Sjöberg BR; Eriksson S
    Methods Enzymol; 1978; 51():227-37. PubMed ID: 357894
    [No Abstract]   [Full Text] [Related]  

  • 11. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase.
    Sheu KF; Richard JP; Frey PA
    Biochemistry; 1979 Dec; 18(25):5548-56. PubMed ID: 229894
    [No Abstract]   [Full Text] [Related]  

  • 12. Enzymatic channeling of DNA precursors.
    Mathews CK
    Basic Life Sci; 1985; 31():47-66. PubMed ID: 2986590
    [No Abstract]   [Full Text] [Related]  

  • 13. Alterations leading to increased ribonucleotide reductase in cells selected for resistance to deoxynucleosides.
    Meuth M; Green H
    Cell; 1974 Dec; 3(4):367-74. PubMed ID: 4374315
    [No Abstract]   [Full Text] [Related]  

  • 14. Escherichia coli nucleoside diphosphate kinase interactions with T4 phage proteins of deoxyribonucleotide synthesis and possible regulatory functions.
    Shen R; Olcott MC; Kim J; Rajagopal I; Mathews CK
    J Biol Chem; 2004 Jul; 279(31):32225-32. PubMed ID: 15169771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete recovery of the phosphoenzyme-forming activity of nucleoside-diphosphate kinases after reconstitution of their subunits.
    Yokoyama M; Uesaka H; Ohtsuki K
    FEBS Lett; 1986 Oct; 206(2):287-91. PubMed ID: 3019773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubulin-associated nucleoside diphosphokinase.
    Jacobs M; Huitorel P
    Eur J Biochem; 1979 Sep; 99(3):613-22. PubMed ID: 227689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and control of ribonucleoside diphosphate reductase.
    Thelander L
    Biochem Soc Trans; 1977; 5(3):606-10. PubMed ID: 332554
    [No Abstract]   [Full Text] [Related]  

  • 18. Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.
    Luthman M; Eriksson S; Holmgren A; Thelander L
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2158-62. PubMed ID: 377293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant.
    Aslund F; Ehn B; Miranda-Vizuete A; Pueyo C; Holmgren A
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9813-7. PubMed ID: 7937896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GDP kinase activity associated with salt-washed ribosomes.
    Wertheimer AM; Kaulenas MS
    Biochem Biophys Res Commun; 1977 Sep; 78(2):565-71. PubMed ID: 199179
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.