These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 18605986)
1. Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2). Aleksandrov L; Aleksandrov A; Riordan JR Biochem J; 2008 Nov; 416(1):129-36. PubMed ID: 18605986 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
3. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640 [TBL] [Abstract][Full Text] [Related]
4. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646 [TBL] [Abstract][Full Text] [Related]
5. Domain interdependence in the biosynthetic assembly of CFTR. Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596 [TBL] [Abstract][Full Text] [Related]
6. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
7. ATP binding to the first nucleotide-binding domain of multidrug resistance protein MRP1 increases binding and hydrolysis of ATP and trapping of ADP at the second domain. Hou YX; Cui L; Riordan JR; Chang XB J Biol Chem; 2002 Feb; 277(7):5110-9. PubMed ID: 11741902 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354 [TBL] [Abstract][Full Text] [Related]
9. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083 [TBL] [Abstract][Full Text] [Related]
10. Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain. Ando-Akatsuka Y; Abdullaev IF; Lee EL; Okada Y; Sabirov RZ Pflugers Arch; 2002 Nov; 445(2):177-86. PubMed ID: 12457238 [TBL] [Abstract][Full Text] [Related]
11. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones. Wang Y; Loo TW; Bartlett MC; Clarke DM Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688 [TBL] [Abstract][Full Text] [Related]
12. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Neville DC; Rozanas CR; Tulk BM; Townsend RR; Verkman AS Biochemistry; 1998 Feb; 37(8):2401-9. PubMed ID: 9485388 [TBL] [Abstract][Full Text] [Related]
13. Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Atwell S; Brouillette CG; Conners K; Emtage S; Gheyi T; Guggino WB; Hendle J; Hunt JF; Lewis HA; Lu F; Protasevich II; Rodgers LA; Romero R; Wasserman SR; Weber PC; Wetmore D; Zhang FF; Zhao X Protein Eng Des Sel; 2010 May; 23(5):375-84. PubMed ID: 20150177 [TBL] [Abstract][Full Text] [Related]
14. CFTR gating II: Effects of nucleotide binding on the stability of open states. Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296 [TBL] [Abstract][Full Text] [Related]
15. The intact CFTR protein mediates ATPase rather than adenylate kinase activity. Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. Bompadre SG; Li M; Hwang TC J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357 [TBL] [Abstract][Full Text] [Related]
17. Modulator-induced interference in functional cross talk between the substrate and the ATP sites of human P-glycoprotein. Maki N; Moitra K; Silver C; Ghosh P; Chattopadhyay A; Dey S Biochemistry; 2006 Feb; 45(8):2739-51. PubMed ID: 16489767 [TBL] [Abstract][Full Text] [Related]
18. ATP binding to the first nucleotide binding domain of multidrug resistance-associated protein plays a regulatory role at low nucleotide concentration, whereas ATP hydrolysis at the second plays a dominant role in ATP-dependent leukotriene C4 transport. Yang R; Cui L; Hou YX; Riordan JR; Chang XB J Biol Chem; 2003 Aug; 278(33):30764-71. PubMed ID: 12783859 [TBL] [Abstract][Full Text] [Related]
19. A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity. Kidd JF; Ramjeesingh M; Stratford F; Huan LJ; Bear CE J Biol Chem; 2004 Oct; 279(40):41664-9. PubMed ID: 15284228 [TBL] [Abstract][Full Text] [Related]
20. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]