These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18606207)

  • 1. Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway.
    Iwamoto K; Tashima Y; Hamada H; Eguchi Y; Okamoto M
    Biosystems; 2008; 94(1-2):109-17. PubMed ID: 18606207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells.
    Ling H; Kulasiri D; Samarasinghe S
    Biosystems; 2010 Sep; 101(3):213-21. PubMed ID: 20654685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination.
    Iwamoto K; Hamada H; Eguchi Y; Okamoto M
    Biosystems; 2011 Mar; 103(3):384-91. PubMed ID: 21095219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G1 and S-phase checkpoints, chromosome instability, and cancer.
    Nojima H
    Methods Mol Biol; 2004; 280():3-49. PubMed ID: 15187248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S phase damage sensing checkpoints in mammalian cells.
    Larner JM; Lee H; Hamlin JL
    Cancer Surv; 1997; 29():25-45. PubMed ID: 9338095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint.
    Krohn M; Skjølberg HC; Soltani H; Grallert B; Boye E
    J Cell Sci; 2008 Dec; 121(Pt 24):4047-54. PubMed ID: 19033384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of key factor controlling G1/S phase in the mammalian cell cycle using system analysis.
    Tashima Y; Hamada H; Okamoto M; Hanai T
    J Biosci Bioeng; 2008 Oct; 106(4):368-74. PubMed ID: 19000613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the network controlling the G1/S transition in budding yeast.
    Barberis M; Klipp E
    Genome Inform; 2007; 18():85-99. PubMed ID: 18546477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2017 Sep; 429():204-228. PubMed ID: 28647496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in G1-S cell cycle control in head and neck cancer: a review.
    Michalides RJ; van de Brekel M; Balm F
    Head Neck; 2002 Jul; 24(7):694-704. PubMed ID: 12112544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of gene expression profile of G1/S transition in gastric cancer cell cycle].
    Lan B; Liu BY; Zhang J; Wang KK; Chen XH; Zhu ZG
    Zhonghua Wei Chang Wai Ke Za Zhi; 2005 May; 8(3):229-33. PubMed ID: 16167235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The mechanism of cell cycle regulation and its clinical relevance].
    Furukawa Y
    Rinsho Ketsueki; 2001 Apr; 42(4):242-8. PubMed ID: 11400291
    [No Abstract]   [Full Text] [Related]  

  • 13. Using activity time windows and logical representation to reduce the complexity of biological network models: G1/S checkpoint pathway with DNA damage.
    Khazaaleh M; Samarasinghe S
    Biosystems; 2020 May; 191-192():104128. PubMed ID: 32165312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling cell growth and its modulation of the G1/S transition.
    Alarcón T; Tindall MJ
    Bull Math Biol; 2007 Jan; 69(1):197-214. PubMed ID: 17086369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs.
    Hara M; Mori M; Wada T; Tachibana K; Kishimoto T
    Development; 2009 May; 136(10):1687-96. PubMed ID: 19369392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Final checkup of neoplastic DNA replication: evidence for failure in decision-making at the mitotic cell cycle checkpoint G(1)/S.
    Prindull G
    Exp Hematol; 2008 Nov; 36(11):1403-16. PubMed ID: 18940520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function.
    Nguyen A; Rothman DM; Stehn J; Imperiali B; Yaffe MB
    Nat Biotechnol; 2004 Aug; 22(8):993-1000. PubMed ID: 15273693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of the complex dynamics of G1, S, and G2-M checkpoint activities.
    Ubezio P; Lupi M; Branduardi D; Cappella P; Cavallini E; Colombo V; Matera G; Natoli C; Tomasoni D; D'Incalci M
    Cancer Res; 2009 Jun; 69(12):5234-40. PubMed ID: 19509236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of T lymphocyte proliferation controlled by interleukin-2 internalization.
    Borisova LR; Kuznetsov VA
    Membr Cell Biol; 1997; 11(2):259-67. PubMed ID: 9354404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is TFIIH an activator of the p53-mediated G1/S checkpoint?
    Jones CJ; Wynford-Thomas D
    Trends Genet; 1995 May; 11(5):165-6. PubMed ID: 7785071
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.