These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18606367)

  • 61. Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction.
    Defea K
    Br J Pharmacol; 2008 Mar; 153 Suppl 1(Suppl 1):S298-309. PubMed ID: 18037927
    [TBL] [Abstract][Full Text] [Related]  

  • 62. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.
    Martini L; Hastrup H; Holst B; Fraile-Ramos A; Marsh M; Schwartz TW
    Mol Pharmacol; 2002 Jul; 62(1):30-7. PubMed ID: 12065752
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of Arrestin Recruitment to Chemokine Receptors by Bioluminescence Resonance Energy Transfer.
    Bonneterre J; Montpas N; Boularan C; Galés C; Heveker N
    Methods Enzymol; 2016; 570():131-53. PubMed ID: 26921945
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biased ligand modulation of seven transmembrane receptors (7TMRs): functional implications for drug discovery.
    Correll CC; McKittrick BA
    J Med Chem; 2014 Aug; 57(16):6887-96. PubMed ID: 24697360
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Teaching old receptors new tricks: biasing seven-transmembrane receptors.
    Rajagopal S; Rajagopal K; Lefkowitz RJ
    Nat Rev Drug Discov; 2010 May; 9(5):373-86. PubMed ID: 20431569
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation.
    Gesty-Palmer D; Flannery P; Yuan L; Corsino L; Spurney R; Lefkowitz RJ; Luttrell LM
    Sci Transl Med; 2009 Oct; 1(1):1ra1. PubMed ID: 20368153
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence.
    Ibsen MS; Finlay DB; Patel M; Javitch JA; Glass M; Grimsey NL
    Front Pharmacol; 2019; 10():350. PubMed ID: 31024316
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysis of G Protein and β-Arrestin Activation in Chemokine Receptors Signaling.
    Vacchini A; Busnelli M; Chini B; Locati M; Borroni EM
    Methods Enzymol; 2016; 570():421-40. PubMed ID: 26921957
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays.
    Ayoub MA; Landomiel F; Gallay N; Jégot G; Poupon A; Crépieux P; Reiter E
    Front Endocrinol (Lausanne); 2015; 6():130. PubMed ID: 26379624
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks.
    Rose RH; Briddon SJ; Holliday ND
    Br J Pharmacol; 2010 Feb; 159(4):738-50. PubMed ID: 20015298
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biased agonism as a mechanism for differential signaling by chemokine receptors.
    Rajagopal S; Bassoni DL; Campbell JJ; Gerard NP; Gerard C; Wehrman TS
    J Biol Chem; 2013 Dec; 288(49):35039-48. PubMed ID: 24145037
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors.
    Misawa N; Kafi AK; Hattori M; Miura K; Masuda K; Ozawa T
    Anal Chem; 2010 Mar; 82(6):2552-60. PubMed ID: 20180537
    [TBL] [Abstract][Full Text] [Related]  

  • 73. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors.
    Ma X; Leurs R; Vischer HF
    Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improved donor/acceptor BRET couples for monitoring beta-arrestin recruitment to G protein-coupled receptors.
    Kamal M; Marquez M; Vauthier V; Leloire A; Froguel P; Jockers R; Couturier C
    Biotechnol J; 2009 Sep; 4(9):1337-44. PubMed ID: 19557797
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functionality of Melatonin Receptors: Recruitment of β-Arrestin at MT1.
    Dupré C; Legros C; Boutin JA
    Methods Mol Biol; 2022; 2550():195-199. PubMed ID: 36180693
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications.
    Shenoy SK
    Handb Exp Pharmacol; 2014; 219():187-203. PubMed ID: 24292831
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arresting developments in heptahelical receptor signaling and regulation.
    Perry SJ; Lefkowitz RJ
    Trends Cell Biol; 2002 Mar; 12(3):130-8. PubMed ID: 11859025
    [TBL] [Abstract][Full Text] [Related]  

  • 78. To sense or not to sense-new insights from GPCR-based and arrestin-based biosensors.
    Haider RS; Godbole A; Hoffmann C
    Curr Opin Cell Biol; 2019 Apr; 57():16-24. PubMed ID: 30408632
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Receptor tyrosine kinase and G-protein coupled receptor signaling and sorting within endosomes.
    Grimes ML; Miettinen HM
    J Neurochem; 2003 Mar; 84(5):905-18. PubMed ID: 12603816
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.