BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 18606368)

  • 1. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering.
    Navran S
    Biotechnol Annu Rev; 2008; 14():275-96. PubMed ID: 18606368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinostats and bioreactors.
    Klaus DM
    Gravit Space Biol Bull; 2001 Jun; 14(2):55-64. PubMed ID: 11865869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The simulation of microgravity conditions on the ground.
    Albrecht-Buehler G
    ASGSB Bull; 1992 Oct; 5(2):3-10. PubMed ID: 11537639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated weightlessness in the design and exploitation of a NMR-compatible bioreactor.
    Bradamante S; Barenghi L; Villa A
    Biotechnol Prog; 2004; 20(5):1454-9. PubMed ID: 15458330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel.
    Gao H; Ayyaswamy PS; Ducheyne P
    Microgravity Sci Technol; 1997; 10(3):154-65. PubMed ID: 11543416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis.
    Kwon O; Devarakonda SB; Sankovic JM; Banerjee RK
    Biotechnol Bioeng; 2008 Jan; 99(1):99-107. PubMed ID: 17614322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A NMR-compatible and reduced gravity simulation based (NRG) bioreactor for on-line monitoring cell culture metabolism.
    Bradamante S; Barenghi L; Villa A
    J Gravit Physiol; 2004 Jul; 11(2):P191-2. PubMed ID: 16237833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Biotechnology Facility for International Space Station.
    Goodwin T; Lundquist C; Tuxhorn J; Hurlbert K
    J Gravit Physiol; 2004 Mar; 11(1):75-80. PubMed ID: 16145813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity.
    Long JP; Pierson S; Hughes JH
    Aviat Space Environ Med; 1998 Sep; 69(9):851-6. PubMed ID: 9737755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures.
    Mihailova M; Trenev V; Genova P; Konstantinov S
    Ann N Y Acad Sci; 2006 Dec; 1091():470-89. PubMed ID: 17341637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel buoyancy technique optimizes simulated microgravity conditions for whole sensory organ culture in rotating bioreactors.
    Arnold HJ; Müller M; Waldhaus J; Hahn H; Löwenheim H
    Tissue Eng Part C Methods; 2010 Feb; 16(1):51-61. PubMed ID: 19355813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor.
    Margolis L; Hatfill S; Chuaqui R; Vocke C; Emmert-Buck M; Linehan WM; Duray PH
    J Urol; 1999 Jan; 161(1):290-7. PubMed ID: 10037426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreactors for tissue mass culture: design, characterization, and recent advances.
    Martin Y; Vermette P
    Biomaterials; 2005 Dec; 26(35):7481-503. PubMed ID: 16023202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach.
    Prestwich GD
    J Cell Biochem; 2007 Aug; 101(6):1370-83. PubMed ID: 17492655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity.
    Schwarz RP; Goodwin TJ; Wolf DA
    J Tissue Cult Methods; 1992; 14(2):51-7. PubMed ID: 11541102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor.
    Ohyabu Y; Kida N; Kojima H; Taguchi T; Tanaka J; Uemura T
    Biotechnol Bioeng; 2006 Dec; 95(5):1003-8. PubMed ID: 16986169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microgravity simulations with human lymphocytes in the free fall machine and in the random positioning machine.
    Schwarzenberg M; Pippia P; Meloni MA; Cossu G; Cogoli-Greuter M; Cogoli A
    J Gravit Physiol; 1998 Jul; 5(1):P23-6. PubMed ID: 11542350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultivation of lacrimal gland acinar cells in a microgravity environment.
    Schrader S; Kremling C; Klinger M; Laqua H; Geerling G
    Br J Ophthalmol; 2009 Aug; 93(8):1121-5. PubMed ID: 19416938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.