These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18606418)

  • 21. A modification of Murray's law for shear-thinning rheology.
    McGah PM; Capobianchi M
    J Biomech Eng; 2015 May; 137(5):054503. PubMed ID: 25565456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large artery structure and function in hypertension and end-stage renal disease.
    London GM; Guerin AP; Pannier B; Marchais SJ; Safar ME
    J Hypertens; 1998 Dec; 16(12 Pt 2):1931-8. PubMed ID: 9886879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.
    McCulloh KA; Sperry JS
    Am J Bot; 2005 Jun; 92(6):985-9. PubMed ID: 21652482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interspecific scaling of blood flow rates and arterial sizes in mammals.
    Seymour RS; Hu Q; Snelling EP; White CR
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30877224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress.
    Humphrey JD
    Hypertension; 2008 Aug; 52(2):195-200. PubMed ID: 18541735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Left ventricular remodeling impairs coronary flow reserve in hypertensive patients.
    Schäfer S; Kelm M; Mingers S; Strauer BE
    J Hypertens; 2002 Jul; 20(7):1431-7. PubMed ID: 12131541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech; 1996 May; 29(5):635-42. PubMed ID: 8707790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radius exponent in elastic and rigid arterial models optimized by the least energy principle.
    Nakamura Y; Awa S
    Physiol Rep; 2014 Feb; 2(2):e00236. PubMed ID: 24744905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variability of arterial wall shear stress, its dependence on vessel diameter and implications for Murray's Law.
    Friedman MH
    Atherosclerosis; 2009 Mar; 203(1):47-8. PubMed ID: 18715565
    [No Abstract]   [Full Text] [Related]  

  • 30. A model for geometric and mechanical adaptation of arteries to sustained hypertension.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech Eng; 1998 Feb; 120(1):9-17. PubMed ID: 9675674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis.
    Kassab GS; Fung YC
    Ann Biomed Eng; 1995; 23(1):13-20. PubMed ID: 7762878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model.
    Sun N; Wood NB; Hughes AD; Thom SA; Yun Xu X
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3148-57. PubMed ID: 17277019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influences of stenosis on the downstream flow pattern in curved arteries.
    Liu B
    Med Eng Phys; 2007 Oct; 29(8):868-76. PubMed ID: 17081795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Noninvasive assessment of morphology and function of the great vessels].
    Hayoz D; Weber R; Delacrétaz E; Brunner HR
    Schweiz Med Wochenschr; 1995 Feb; 125(7):283-7. PubMed ID: 7878406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opposite effects of hypertension and smoking on large artery wall shear conditions.
    Levenson J; Simon A
    J Hypertens Suppl; 1988 Dec; 6(4):S176-8. PubMed ID: 3241195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model of fluid flow in solid tumors.
    Pozrikidis C; Farrow DA
    Ann Biomed Eng; 2003 Feb; 31(2):181-94. PubMed ID: 12627826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dermal Lymphatic Capillaries Do Not Obey Murray's Law.
    Talkington AM; Davis RB; Datto NC; Goodwin ER; Miller LA; Caron KM
    Front Cardiovasc Med; 2022; 9():840305. PubMed ID: 35498025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remodeling of arterial wall: Response to changes in both blood flow and blood pressure.
    Hayashi K; Makino A; Kakoi D
    J Mech Behav Biomed Mater; 2018 Jan; 77():475-484. PubMed ID: 29032314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A new hemodynamic endothelial approach using non-invasive evaluation of instantaneous wall shear in human arteries. Application in arterial hypertension].
    Colin JM; Del-Pino M; Aouate JP; Flaud P; Levenson J; Simon A
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1201-3. PubMed ID: 2148077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.