BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 18606654)

  • 1. FOXP3 induced by CD28/B7 interaction regulates CD25 and anergic phenotype in human CD4+CD25- T lymphocytes.
    Scottà C; Soligo M; Camperio C; Piccolella E
    J Immunol; 2008 Jul; 181(2):1025-33. PubMed ID: 18606654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta.
    Scholzen A; Mittag D; Rogerson SJ; Cooke BM; Plebanski M
    PLoS Pathog; 2009 Aug; 5(8):e1000543. PubMed ID: 19680449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity.
    Pallandre JR; Brillard E; Créhange G; Radlovic A; Remy-Martin JP; Saas P; Rohrlich PS; Pivot X; Ling X; Tiberghien P; Borg C
    J Immunol; 2007 Dec; 179(11):7593-604. PubMed ID: 18025205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production.
    Allan SE; Crome SQ; Crellin NK; Passerini L; Steiner TS; Bacchetta R; Roncarolo MG; Levings MK
    Int Immunol; 2007 Apr; 19(4):345-54. PubMed ID: 17329235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans.
    Montagnoli C; Bacci A; Bozza S; Gaziano R; Mosci P; Sharpe AH; Romani L
    J Immunol; 2002 Dec; 169(11):6298-308. PubMed ID: 12444136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective expansion of memory CD4(+) T cells by mitogenic human CD28 generates inflammatory cytokines and regulatory T cells.
    Singh M; Basu S; Camell C; Couturier J; Nudelman RJ; Medina MA; Rodgers JR; Lewis DE
    Eur J Immunol; 2008 Jun; 38(6):1522-32. PubMed ID: 18446791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis.
    Liu Z; Geboes K; Hellings P; Maerten P; Heremans H; Vandenberghe P; Boon L; van Kooten P; Rutgeerts P; Ceuppens JL
    J Immunol; 2001 Aug; 167(3):1830-8. PubMed ID: 11466409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD28 costimulation regulates FOXP3 in a RelA/NF-κB-dependent mechanism.
    Soligo M; Camperio C; Caristi S; Scottà C; Del Porto P; Costanzo A; Mantel PY; Schmidt-Weber CB; Piccolella E
    Eur J Immunol; 2011 Feb; 41(2):503-13. PubMed ID: 21268019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-15 acts as a potent inducer of CD4(+)CD25(hi) cells expressing FOXP3.
    Imamichi H; Sereti I; Lane HC
    Eur J Immunol; 2008 Jun; 38(6):1621-30. PubMed ID: 18493981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes.
    Brillard E; Pallandre JR; Chalmers D; Ryffel B; Radlovic A; Seilles E; Rohrlich PS; Pivot X; Tiberghien P; Saas P; Borg C
    Exp Hematol; 2007 Mar; 35(3):416-25. PubMed ID: 17309822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation.
    Skapenko A; Lipsky PE; Kraetsch HG; Kalden JR; Schulze-Koops H
    J Immunol; 2001 Apr; 166(7):4283-92. PubMed ID: 11254680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.
    Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T
    Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells.
    Siegmund K; Rückert B; Ouaked N; Bürgler S; Speiser A; Akdis CA; Schmidt-Weber CB
    J Immunol; 2009 Feb; 182(4):2124-30. PubMed ID: 19201865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells.
    Yang ZZ; Novak AJ; Ziesmer SC; Witzig TE; Ansell SM
    Blood; 2007 Oct; 110(7):2537-44. PubMed ID: 17615291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. B7-CD28 interaction is a late acting co-stimulatory signal for human T cell responses.
    Zhang YQ; Joost van Neerven RJ; Van Gool SW; Coorevits L; de Boer M; Ceuppens JL
    Int Immunol; 1997 Aug; 9(8):1095-102. PubMed ID: 9263006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B7-2 (CD86) controls the priming of autoreactive CD4 T cell response against pancreatic islets.
    Yadav D; Judkowski V; Flodstrom-Tullberg M; Sterling L; Redmond WL; Sherman L; Sarvetnick N
    J Immunol; 2004 Sep; 173(6):3631-9. PubMed ID: 15356107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma.
    Siddiqui SA; Frigola X; Bonne-Annee S; Mercader M; Kuntz SM; Krambeck AE; Sengupta S; Dong H; Cheville JC; Lohse CM; Krco CJ; Webster WS; Leibovich BC; Blute ML; Knutson KL; Kwon ED
    Clin Cancer Res; 2007 Apr; 13(7):2075-81. PubMed ID: 17404089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of CD28 signaling in homeostasis/survival of TGF-beta converted CD4+CD25+ Tregs from thymic CD4+CD25- single positive T cells.
    Liu Y; Amarnath S; Chen W
    Transplantation; 2006 Oct; 82(7):953-64. PubMed ID: 17038912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25- T cells.
    Amarnath S; Dong L; Li J; Wu Y; Chen W
    Retrovirology; 2007 Aug; 4():57. PubMed ID: 17688698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forkhead transcription factor FOXP3 upregulates CD25 expression through cooperation with RelA/NF-κB.
    Camperio C; Caristi S; Fanelli G; Soligo M; Del Porto P; Piccolella E
    PLoS One; 2012; 7(10):e48303. PubMed ID: 23144749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.