BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18607185)

  • 1. Glycation as an atherogenic modification of LDL.
    Younis N; Sharma R; Soran H; Charlton-Menys V; Elseweidy M; Durrington PN
    Curr Opin Lipidol; 2008 Aug; 19(4):378-84. PubMed ID: 18607185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of LDL and its subfractions to glycation.
    Soran H; Durrington PN
    Curr Opin Lipidol; 2011 Aug; 22(4):254-61. PubMed ID: 21734572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Non-enzymatic glycosylation of lipoproteins in the pathogenesis of atherosclerosis in diabetics].
    Calvo C
    Rev Med Chil; 1997 Apr; 125(4):460-5. PubMed ID: 9460289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoprotein glyco-oxidation.
    Picard S
    Diabete Metab; 1995 Apr; 21(2):89-94. PubMed ID: 7621977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation and oxidation: a role in the pathogenesis of atherosclerosis.
    Lyons TJ
    Am J Cardiol; 1993 Feb; 71(6):26B-31B. PubMed ID: 8434558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis.
    Zerrad-Saadi A; Therond P; Chantepie S; Couturier M; Rye KA; Chapman MJ; Kontush A
    Arterioscler Thromb Vasc Biol; 2009 Dec; 29(12):2169-75. PubMed ID: 19762782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation of LDL in non-diabetic people: Small dense LDL is preferentially glycated both in vivo and in vitro.
    Younis N; Charlton-Menys V; Sharma R; Soran H; Durrington PN
    Atherosclerosis; 2009 Jan; 202(1):162-8. PubMed ID: 18511055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An hypothesis for the immunopathogenesis of atherosclerosis.
    Bhakdi S
    Clin Nephrol; 2003 Jul; 60 Suppl 1():S49-52. PubMed ID: 12940533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis.
    Hodgkinson CP; Laxton RC; Patel K; Ye S
    Arterioscler Thromb Vasc Biol; 2008 Dec; 28(12):2275-81. PubMed ID: 18818414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation of plasma lipoprotein lipid membrane and screening for lipid glycation inhibitor.
    Nakagawa K; Ibusuki D; Yamashita S; Miyazawa T
    Ann N Y Acad Sci; 2008 Apr; 1126():288-90. PubMed ID: 18448833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picrorhiza scrophulariiflora improves accelerated atherosclerosis through inhibition of redox-sensitive inflammation.
    Guo ZJ; Hou FF; Liu SX; Tian JW; Zhang WR; Xie D; Zhou ZM; Liu ZQ; Zhang X
    Int J Cardiol; 2009 Aug; 136(3):315-24. PubMed ID: 19178960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediabetic and diabetic in vivo modification of circulating low-density lipoprotein attenuates its stimulatory effect on adrenal aldosterone and cortisol secretion.
    Kopprasch S; Pietzsch J; Ansurudeen I; Graessler J; Krug AW; Ehrhart-Bornstein M; Bornstein SR
    J Endocrinol; 2009 Jan; 200(1):45-52. PubMed ID: 18835979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased PAFAH and oxidized lipids are associated with inflammation and atherosclerosis in hypercholesterolemic pigs.
    De Keyzer D; Karabina SA; Wei W; Geeraert B; Stengel D; Marsillach J; Camps J; Holvoet P; Ninio E
    Arterioscler Thromb Vasc Biol; 2009 Dec; 29(12):2041-6. PubMed ID: 19797705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammation and immunity in diabetic vascular complications.
    Nilsson J; Bengtsson E; Fredrikson GN; Björkbacka H
    Curr Opin Lipidol; 2008 Oct; 19(5):519-24. PubMed ID: 18769234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process.
    Ansari NA; Moinuddin ; Alam K; Ali A
    Hum Immunol; 2009 Jun; 70(6):417-24. PubMed ID: 19332092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall.
    Hagensen MK; Mortensen MB; Kjolby M; Palmfeldt J; Bentzon JF; Gregersen S
    Atherosclerosis; 2019 Jul; 286():156-162. PubMed ID: 30871723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoprotein modification by secretory phospholipase A(2) enzymes contributes to the initiation and progression of atherosclerosis.
    Oörni K; Kovanen PT
    Curr Opin Lipidol; 2009 Oct; 20(5):421-7. PubMed ID: 19593123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation: evidence of their presence in atherosclerotic lesions.
    Ravandi A; Kuksis A; Shaikh NA
    Arterioscler Thromb Vasc Biol; 2000 Feb; 20(2):467-77. PubMed ID: 10669645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atherogenic dyslipidemia and oxidative stress: a new look.
    Rizzo M; Kotur-Stevuljevic J; Berneis K; Spinas G; Rini GB; Jelic-Ivanovic Z; Spasojevic-Kalimanovska V; Vekic J
    Transl Res; 2009 May; 153(5):217-23. PubMed ID: 19375682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice.
    Sun L; Ishida T; Yasuda T; Kojima Y; Honjo T; Yamamoto Y; Yamamoto H; Ishibashi S; Hirata K; Hayashi Y
    Cardiovasc Res; 2009 May; 82(2):371-81. PubMed ID: 19176597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.