BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18607415)

  • 1. Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides.
    Liao D; Galajda P; Riehn R; Ilic R; Puchalla JL; Yu HG; Craighead HG; Austin RH
    Opt Express; 2008 Jul; 16(14):10077-90. PubMed ID: 18607415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero-mode waveguides for single-molecule analysis at high concentrations.
    Levene MJ; Korlach J; Turner SW; Foquet M; Craighead HG; Webb WW
    Science; 2003 Jan; 299(5607):682-6. PubMed ID: 12560545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations.
    Moran-Mirabal JM; Craighead HG
    Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence correlation spectroscopy: novel variations of an established technique.
    Haustein E; Schwille P
    Annu Rev Biophys Biomol Struct; 2007; 36():151-69. PubMed ID: 17477838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. lambda-Repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides.
    Samiee KT; Foquet M; Guo L; Cox EC; Craighead HG
    Biophys J; 2005 Mar; 88(3):2145-53. PubMed ID: 15613638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy.
    Yordanov S; Best A; Butt HJ; Koynov K
    Opt Express; 2009 Nov; 17(23):21149-58. PubMed ID: 19997354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subpicosecond transient signal spectroscopy of Prodan in dimethylformamide solution.
    Erostyák J; Myllyperkiö P; Buzády A; Korppi-Tommola J
    Ann N Y Acad Sci; 2008; 1130():52-5. PubMed ID: 18596331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput acousto-optic-tunable-filter-based time-resolved fluorescence spectrometer for optical biopsy.
    Yuan Y; Hwang JY; Krishnamoorthy M; Ye K; Zhang Y; Ning J; Wang RC; Deen MJ; Fang Q
    Opt Lett; 2009 Apr; 34(7):1132-4. PubMed ID: 19340243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.
    Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics.
    Kuwana E; Sevick-Muraca EM
    Biophys J; 2002 Aug; 83(2):1165-76. PubMed ID: 12124296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optics and performance of dual-focus fluorescence correlation spectroscopy.
    Dertinger T; Loman A; Ewers B; Müller CB; Krämer B; Enderlein J
    Opt Express; 2008 Sep; 16(19):14353-68. PubMed ID: 18794971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation.
    Schwille P; Haupts U; Maiti S; Webb WW
    Biophys J; 1999 Oct; 77(4):2251-65. PubMed ID: 10512844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides.
    Davanço M; Srinivasan K
    Opt Express; 2009 Jun; 17(13):10542-63. PubMed ID: 19550451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical chemistry. How to detect weak pairs.
    Laurence TA; Weiss S
    Science; 2003 Jan; 299(5607):667-8. PubMed ID: 12560536
    [No Abstract]   [Full Text] [Related]  

  • 15. Fluorescence lifetime correlation spectroscopy: Basics and applications.
    Ghosh A; Karedla N; Thiele JC; Gregor I; Enderlein J
    Methods; 2018 May; 140-141():32-39. PubMed ID: 29454862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy.
    Widengren J; Chmyrov A; Eggeling C; Löfdahl PA; Seidel CA
    J Phys Chem A; 2007 Jan; 111(3):429-40. PubMed ID: 17228891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule detection sensitivity using planar integrated optics on a chip.
    Yin D; Deamer DW; Schmidt H; Barber JP; Hawkins AR
    Opt Lett; 2006 Jul; 31(14):2136-8. PubMed ID: 16794704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector.
    Yamashita T; Liu D; Miki S; Yamamoto J; Haraguchi T; Kinjo M; Hiraoka Y; Wang Z; Terai H
    Opt Express; 2014 Nov; 22(23):28783-9. PubMed ID: 25402117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon excitation fluorescence bioassays.
    Hänninen P; Soukka J; Soini JT
    Ann N Y Acad Sci; 2008; 1130():320-6. PubMed ID: 18596366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures.
    Dittrich PS; Schwille P
    Anal Chem; 2002 Sep; 74(17):4472-9. PubMed ID: 12236358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.