These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18607478)

  • 1. Surface plasmon polariton detection discriminating the polarization reversal image dipole effects.
    Lee KG; Ahn KJ; Kihm HW; Ahn JS; Kim TK; Hong S; Kim ZH; Kim DS
    Opt Express; 2008 Jul; 16(14):10641-9. PubMed ID: 18607478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.
    Zhu S; Chen TP; Cen ZH; Goh ES; Yu SF; Liu YC; Liu Y
    Opt Express; 2010 Oct; 18(21):21926-31. PubMed ID: 20941092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon resonance in silver nanoparticles arrays grown by atomic terrace low-angle shadowing.
    Cuccureddu F; Murphy S; Shvets IV; Porcu M; Zandbergen HW
    Nano Lett; 2008 Oct; 8(10):3248-56. PubMed ID: 18798686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles.
    Ross BM; Lee LP
    Opt Lett; 2009 Apr; 34(7):896-8. PubMed ID: 19340163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance in superperiodic metal nanoslits.
    Leong H; Guo J
    Opt Lett; 2011 Dec; 36(24):4764-6. PubMed ID: 22179876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures.
    Byun KM; Jang SM; Kim SJ; Kim D
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1027-34. PubMed ID: 19340279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.
    Liu CH; Hong MH; Cheung HW; Zhang F; Huang ZQ; Tan LS; Hor TS
    Opt Express; 2008 Jul; 16(14):10701-9. PubMed ID: 18607486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance in two-dimensional nanobottle arrays.
    Iu H; Li J; Ong HC; Wan JT
    Opt Express; 2008 Jul; 16(14):10294-302. PubMed ID: 18607438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles.
    Tsema BB; Tsema YB; Shcherbakov MR; Lin YH; Liu DR; Klimov VV; Fedyanin AA; Tsai DP
    Opt Express; 2012 May; 20(10):10538-44. PubMed ID: 22565679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and designing metallic superlens with metallic objects.
    Tremblay G; Sheng Y
    Opt Express; 2011 Oct; 19(21):20634-41. PubMed ID: 21997073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-polariton nano-strip resonators: from visible to infra-red.
    Della Valle G; Sondergaard T; Bozhevolnyi SI
    Opt Express; 2008 May; 16(10):6867-76. PubMed ID: 18545389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout.
    Udagedara IB; Rukhlenko ID; Premaratne M
    Opt Express; 2011 Oct; 19(21):19973-86. PubMed ID: 21997007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
    Ma WY; Yao J; Yang H; Liu JY; Li F; Hilton JP; Lin Q
    Opt Express; 2009 Aug; 17(17):14967-76. PubMed ID: 19687975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting.
    Nishijima Y; Rosa L; Juodkazis S
    Opt Express; 2012 May; 20(10):11466-77. PubMed ID: 22565766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination.
    Huda GM; Donev EU; Mengüç MP; Hastings JT
    Opt Express; 2011 Jun; 19(13):12679-87. PubMed ID: 21716511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles.
    Antosiewicz TJ; Apell SP; Zäch M; Zorić I; Langhammer C
    Phys Rev Lett; 2012 Dec; 109(24):247401. PubMed ID: 23368376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.