These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 18608339)
1. Periosteal biaxial residual strains correlate with bone specific growth rates in chick embryos. Chen JC; Zhao B; Longaker MT; Helms JA; Carter DR Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):453-61. PubMed ID: 18608339 [TBL] [Abstract][Full Text] [Related]
2. Residual periosteum tension is insufficient to directly modulate bone growth. Foolen J; van Donkelaar CC; Murphy P; Huiskes R; Ito K J Biomech; 2009 Jan; 42(2):152-7. PubMed ID: 19058805 [TBL] [Abstract][Full Text] [Related]
3. Bone growth in length and width: the Yin and Yang of bone stability. Rauch F J Musculoskelet Neuronal Interact; 2005; 5(3):194-201. PubMed ID: 16172510 [TBL] [Abstract][Full Text] [Related]
4. The role of periosteal tension in the growth of long bones. Warrell E; Taylor JF J Anat; 1979 Jan; 128(Pt 1):179-84. PubMed ID: 422478 [TBL] [Abstract][Full Text] [Related]
5. Strain gradients correlate with sites of periosteal bone formation. Gross TS; Edwards JL; McLeod KJ; Rubin CT J Bone Miner Res; 1997 Jun; 12(6):982-8. PubMed ID: 9169359 [TBL] [Abstract][Full Text] [Related]
6. Intracellular tension in periosteum/perichondrium cells regulates long bone growth. Foolen J; van Donkelaar CC; Ito K J Orthop Res; 2011 Jan; 29(1):84-91. PubMed ID: 20690184 [TBL] [Abstract][Full Text] [Related]
7. Bone's early responses to mechanical loading differ in distinct genetic strains of chick: selection for enhanced growth reduces skeletal adaptability. Pitsillides AA; Rawlinson SC; Mosley JR; Lanyon LE J Bone Miner Res; 1999 Jun; 14(6):980-7. PubMed ID: 10352107 [TBL] [Abstract][Full Text] [Related]
8. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading. Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255 [TBL] [Abstract][Full Text] [Related]
9. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
10. A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. Nowlan NC; Murphy P; Prendergast PJ J Biomech; 2008; 41(2):249-58. PubMed ID: 18005973 [TBL] [Abstract][Full Text] [Related]
11. Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading. Rawlinson SC; Murray DH; Mosley JR; Wright CD; Bredl JC; Saxon LK; Loveridge N; Leterrier C; Constantin P; Farquharson C; Pitsillides AA Bone; 2009 Aug; 45(2):357-66. PubMed ID: 19409517 [TBL] [Abstract][Full Text] [Related]
12. [Morphological transformation of limb bones with growth]. Takeuchi S Kaibogaku Zasshi; 2000 Apr; 75(2):207-14. PubMed ID: 10824512 [TBL] [Abstract][Full Text] [Related]
13. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry. Chanavaz M J Oral Implantol; 1995; 21(3):214-9. PubMed ID: 8699515 [TBL] [Abstract][Full Text] [Related]
14. Paralysis and long bone growth in the chick: growth shape trajectories of the pelvic limb. Bertram JE; Greenberg LS; Miyake T; Hall BK Growth Dev Aging; 1997; 61(2):51-60. PubMed ID: 9348471 [TBL] [Abstract][Full Text] [Related]
15. Periosteal response in translation-induced bone remodelling. Feik SA; Ellender G; Crowe DM; Ramm-Anderson SM J Anat; 1990 Aug; 171():69-84. PubMed ID: 2081711 [TBL] [Abstract][Full Text] [Related]
16. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. Judex S; Gross TS; Zernicke RF J Bone Miner Res; 1997 Oct; 12(10):1737-45. PubMed ID: 9333136 [TBL] [Abstract][Full Text] [Related]
17. VEGF facilitates periosteal distraction-induced osteogenesis in rabbits: a micro-computerized tomography study. Casap N; Venezia NB; Wilensky A; Samuni Y Tissue Eng Part A; 2008 Feb; 14(2):247-53. PubMed ID: 18333777 [TBL] [Abstract][Full Text] [Related]
18. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica). Pourlis AF; Antonopoulos J; Magras IN Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922 [TBL] [Abstract][Full Text] [Related]
19. Static and dynamic osteogenesis. Marotti G Ital J Anat Embryol; 2010; 115(1-2):123-6. PubMed ID: 21073001 [TBL] [Abstract][Full Text] [Related]
20. Osteogenesis from cultured chick periostea has a specific requirement for chloride. Lovitch D; Christianson ML J Bone Miner Res; 2000 Aug; 15(8):1620-9. PubMed ID: 10934662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]